Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 26(7): 3920-3929, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32162439

RESUMEN

Large-scale terrestrial carbon (C) estimating studies using methods such as atmospheric inversion, biogeochemical modeling, and field inventories have produced different results. The goal of this study was to integrate fine-scale processes including land use and land cover change into a large-scale ecosystem framework. We analyzed the terrestrial C budget of the conterminous United States from 1971 to 2015 at 1-km resolution using an enhanced dynamic global vegetation model and comprehensive land cover change data. Effects of atmospheric CO2 fertilization, nitrogen deposition, climate, wildland fire, harvest, and land use/land cover change (LUCC) were considered. We estimate annual C losses from cropland harvest, forest clearcut and thinning, fire, and LUCC were 436.8, 117.9, 10.5, and 10.4 TgC/year, respectively. C stored in ecosystems increased from 119,494 to 127,157 TgC between 1971 and 2015, indicating a mean annual net C sink of 170.3 TgC/year. Although ecosystem net primary production increased by approximately 12.3 TgC/year, most of it was offset by increased C loss from harvest and natural disturbance and increased ecosystem respiration related to forest aging. As a result, the strength of the overall ecosystem C sink did not increase over time. Our modeled results indicate the conterminous US C sink was about 30% smaller than previous modeling studies, but converged more closely with inventory data.


Asunto(s)
Carbono , Ecosistema , Carbono/análisis , Secuestro de Carbono , Clima , Cambio Climático , Bosques , Estados Unidos
2.
Carbon Balance Manag ; 11(1): 10, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27375771

RESUMEN

BACKGROUND: Human activities have diverse and profound impacts on ecosystem carbon cycles. The Piedmont ecoregion in the eastern United States has undergone significant land use and land cover change in the past few decades. The purpose of this study was to use newly available land use and land cover change data to quantify carbon changes within the ecoregion. Land use and land cover change data (60-m spatial resolution) derived from sequential remotely sensed Landsat imagery were used to generate 960-m resolution land cover change maps for the Piedmont ecoregion. These maps were used in the Integrated Biosphere Simulator (IBIS) to simulate ecosystem carbon stock and flux changes from 1971 to 2010. RESULTS: Results show that land use change, especially urbanization and forest harvest had significant impacts on carbon sources and sinks. From 1971 to 2010, forest ecosystems sequestered 0.25 Mg C ha-1 yr-1, while agricultural ecosystems sequestered 0.03 Mg C ha-1 yr-1. The total ecosystem C stock increased from 2271 Tg C in 1971 to 2402 Tg C in 2010, with an annual average increase of 3.3 Tg C yr-1. CONCLUSIONS: Terrestrial lands in the Piedmont ecoregion were estimated to be weak net carbon sink during the study period. The major factors contributing to the carbon sink were forest growth and afforestation; the major factors contributing to terrestrial emissions were human induced land cover change, especially urbanization and forest harvest. An additional amount of carbon continues to be stored in harvested wood products. If this pool were included the carbon sink would be stronger.

3.
Environ Sci Technol ; 48(16): 9859-66, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25075978

RESUMEN

Canada contains 10% of global forests and has been one of the world's largest harvested wood products (HWP) producers. Therefore, Canada's managed forest sector, the managed forest area and HWP, has the potential to significantly increase or reduce atmospheric greenhouse gases. Using the most comprehensive carbon balance analysis to date, this study shows Canada's managed forest area and resulting HWP were a sink of 7510 and 849 teragrams carbon (TgC), respectively, in the period 1901-2010, exceeding Canada's fossil fuel-based emissions over this period (7333 TgC). If Canadian HWP were not produced and used for residential construction, and instead more energy intensive materials were used, there would have been an additional 790 TgC fossil fuel-based emissions. Because the forest carbon increases in the 20th century were mainly due to younger growing forests that resulted from disturbances in the 19th century, and future increases in forest carbon stocks appear uncertain, in coming decades most of the mitigation contribution from Canadian forests will likely accrue from wood substitution that reduces fossil fuel-based emissions and stores carbon, so long as those forests are managed sustainably.


Asunto(s)
Carbono/análisis , Bosques , Contaminantes Atmosféricos/análisis , Biomasa , Canadá , Gases , Termodinámica , Madera/química
4.
Carbon Balance Manag ; 8(1): 4, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23594454

RESUMEN

BACKGROUND: Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land protection for mitigating GHG emissions. RESULTS: The analysis of related national-level datasets shows that during the period of 1992-2001 net forest losses in protected areas were small as compared to those in unprotected areas: -0.74% and -4.07%, respectively. If forest loss rates in protected and unprotected area had been similar, then forest losses in the protected forestlands would be larger by 870 km2/yr forests, that corresponds to release of 7 Tg C/yr (1 Tg=1012 g). Conversely, and continuing to assume no leakage effects or interactions of prices and harvest levels, about 1,200 km2/yr forests could have remained forest during the period of 1992-2001 if net area loss rate in the forestland outside protected areas was reduced by 20%. Not counting carbon in harvested wood products, this is equivalent to reducing fossil-fuel based carbon emissions by 10 Tg C/yr during this period. The South and West had much higher potentials to mitigate GHG emission from reducing loss rates in unprotected forests than that of North region. Spatially, rates of forest loss were higher across the coastal states in the southeastern US than would be expected from their population change, while interior states in the northern US experienced less forest area loss than would have been expected given their demographic characteristics. CONCLUSIONS: The estimated carbon benefit from the reduced forest loss based on current protected areas is 7 Tg C/yr, equivalent to the average carbon benefit per year for a previously proposed ten-year $110 million per year tree planting program scenario in the US. If there had been a program that could have reduced forest area loss by 20% in unprotected forestlands during 1992-2001, collectively the benefits from reduced forest loss would be equal to 9.4% of current net forest ecosystem carbon sequestration in the conterminous US.

5.
Ecol Appl ; 21(6): 1902-24, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21939033

RESUMEN

Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding deforestation and promoting regeneration after disturbance should receive high priority as policy considerations. Policies to encourage programs or projects that influence forest carbon sequestration and offset fossil fuel emissions should also consider major items such as leakage, the cyclical nature of forest growth and regrowth, and the extensive demand for and movement of forest products globally, and other greenhouse gas effects, such as methane and nitrous oxide emissions, and recognize other environmental benefits of forests, such as biodiversity, nutrient management, and watershed protection. Activities that contribute to helping forests adapt to the effects of climate change, and which also complement forest carbon storage strategies, would be prudent.


Asunto(s)
Carbono/metabolismo , Árboles/metabolismo , Biomasa , Ciclo del Carbono , Cambio Climático , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , Factores de Tiempo , Estados Unidos
6.
Ecol Appl ; 21(4): 1154-61, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21774420

RESUMEN

One method of increasing forest carbon stocks that is often discussed is increasing stocking levels on existing forested lands. However, estimates of the potential increases in forest carbon sequestration as a result of increased stocking levels are not readily available. Using the USDA Forest Service's Forest Inventory and Analysis data coupled with the Forest Vegetation Simulator, we estimate that, for a seven-state region in the northeastern United States, timberland contains about 1768 Tg of carbon in aboveground live biomass across all stocking classes. If all medium and understocked stands had the carbon density of fully stocked stands, an additional 453 Tg of carbon would be stored. While the carbon gains per unit area are greatest for understocked stands, generally fewer than 10% of stands are in this condition. The increase in carbon storage per unit area is smaller for stands in the medium stocked class, but the large proportion of stands in this condition offers considerable opportunities. Our analysis indicates that, when seeking to increase forest carbon storage, managing stocking levels is an option with considerable potential, especially since no changes in land use are required.


Asunto(s)
Carbono/metabolismo , Ecosistema , Árboles/metabolismo , New England , New York , Pennsylvania
7.
Environ Sci Technol ; 44(10): 3999-4005, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20355695

RESUMEN

A greenhouse gas and carbon accounting profile was developed for the U.S. forest products industry value chain for 1990 and 2004-2005 by examining net atmospheric fluxes of CO(2) and other greenhouse gases (GHGs) using a variety of methods and data sources. Major GHG emission sources include direct and indirect (from purchased electricity generation) emissions from manufacturing and methane emissions from landfilled products. Forest carbon stocks in forests supplying wood to the industry were found to be stable or increasing. Increases in the annual amounts of carbon removed from the atmosphere and stored in forest products offset about half of the total value chain emissions. Overall net transfers to the atmosphere totaled 91.8 and 103.5 TgCO(2)-eq. in 1990 and 2005, respectively, although the difference between these net transfers may not be statistically significant. Net transfers were higher in 2005 primarily because additions to carbon stored in forest products were less in 2005. Over this same period, energy-related manufacturing emissions decreased by almost 9% even though forest products output increased by approximately 15%. Several types of avoided emissions were considered separately and were collectively found to be notable relative to net emissions.


Asunto(s)
Carbono/análisis , Agricultura Forestal , Gases/análisis , Efecto Invernadero , Estados Unidos
8.
Environ Manage ; 45(2): 377-86, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19967361

RESUMEN

This study utilizes remote sensing derived forest aboveground biomass (AGB) estimates and ownership information obtained from the Protected Areas Database (PAD), combining landscape analyses and GIS techniques to demonstrate how different ownerships (public, regulated private, and other private) relate to the spatial distribution of AGB in New England states of the USA. "Regulated private" lands were dominated by lands in Maine covered by a Land Use Regulatory Commission. The AGB means between all pairs of the identified ownership categories were significantly different (P < 0.05). Mean AGB observed in public lands (156 Mg/ha) was 43% higher than that in regulated private lands (109 Mg/ha), or 30% higher than that of private lands as a whole. Seventy-seven percent of the regional forests (or about 9,300 km(2)) with AGB >200 Mg/ha were located outside the area designated in the PAD and concentrated in western MA, southern VT, southwestern NH, and northwestern CT. While relatively unfragmented and high-AGB forests (>200 Mg/ha) accounted for about 8% of total forested land, they were unevenly proportioned among the three major ownership groups across the region: 19.6% of the public land, 0.8% of the regulated private land, and 11.0% of the other private land. Mean disturbance rates (in absolute value) between 1992 and 2001 were 16, 66, and 19 percent, respectively, on public, regulated private, and other private land. This indicates that management practices from different ownerships have a strong impact on dynamic changes of landscape structures and AGB distributions. Our results may provide insight information for policy makers on issues regarding forest carbon management, conservation biology, and biodiversity studies at regional level.


Asunto(s)
Biomasa , Agricultura Forestal , Propiedad , Árboles , Geografía , New England
9.
Environ Monit Assess ; 144(1-3): 67-79, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17882519

RESUMEN

We used remote-sensing-driven models to detect land-cover change effects on forest aboveground biomass (AGB) density (Mg.ha(-1), dry weight) and total AGB (Tg) in Minnesota, Wisconsin, and Michigan USA, between the years 1992-2001, and conducted an evaluation of the approach. Inputs included remotely-sensed 1992 reflectance data and land-cover map (University of Maryland) from Advanced Very High Resolution Radiometer (AVHRR) and 2001 products from Moderate Resolution Imaging Spectroradiometer (MODIS) at 1-km resolution for the region; and 30-m resolution land-cover maps from the National Land Cover Data (NLCD) for a subarea to conduct nine simulations to address our questions. Sensitivity analysis showed that (1) AVHRR data tended to underestimate AGB density by 11%, on average, compared to that estimated using MODIS data; (2) regional mean AGB density increased slightly from 124 (1992) to 126 Mg ha(-1) (2001) by 1.6%; (3) a substantial decrease in total forest AGB across the region was detected, from 2,507 (1992) to 1,961 Tg (2001), an annual rate of -2.4%; and (4) in the subarea, while NLCD-based estimates suggested a 26% decrease in total AGB from 1992 to 2001, AVHRR/MODIS-based estimates indicated a 36% increase. The major source of uncertainty in change detection of total forest AGB over large areas was due to area differences from using land-cover maps produced by different sources. Scaling up 30-m land-cover map to 1-km resolution caused a mean difference of 8% (in absolute value) in forest area estimates at the county-level ranging from 0 to 17% within a 95% confidence interval.


Asunto(s)
Biomasa , Monitoreo del Ambiente/métodos , Comunicaciones por Satélite , Árboles , Sistemas de Información Geográfica , Humanos , Modelos Biológicos
10.
J Environ Qual ; 35(4): 1348-63, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16825455

RESUMEN

We modeled the effects of afforestation and deforestation on carbon cycling in forest floor and soil from 1900 to 2050 throughout 13 states in the southern United States. The model uses historical data on gross (two-way) transitions between forest, pasture, plowed agriculture, and urban lands along with equations describing changes in carbon over many decades for each type of land use change. Use of gross rather than net land use transition data is important because afforestation causes a gradual gain in carbon stocks for many decades, while deforestation causes a much more rapid loss in carbon stocks. In the South-Central region (Texas to Kentucky) land use changes caused a net emission of carbon before the 1980s, followed by a net sequestration of carbon subsequently. In the Southeast region (Florida to Virginia), there was net emission of carbon until the 1940s, again followed by net sequestration of carbon. These results could improve greenhouse gas inventories produced to meet reporting requirements under the United Nations Framework Convention on Climate Change. Specifically, from 1990 to 2004 for the entire 13-state study area, afforestation caused sequestration of 88 Tg C, and deforestation caused emission of 49 Tg C. However, the net effect of land use change on carbon stocks in soil and forest floor from 1990 to 2004 was about sixfold smaller than the net change in carbon stocks in trees on all forestland. Thus land use change effects and forest carbon cycling during this period are dominated by changes in tree carbon stocks.


Asunto(s)
Agricultura , Carbono/metabolismo , Conservación de los Recursos Naturales , Agricultura Forestal , Efecto Invernadero , Contaminación del Aire/prevención & control , Clima , Ecosistema , Monitoreo del Ambiente , Gases , Geografía , Suelo/análisis , Factores de Tiempo , Estados Unidos
11.
Environ Manage ; 33(4): 433-42, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15453397

RESUMEN

Approximately 37% of forestlands in the conterminous United States are publicly owned; they represent a substantial area of potential carbon sequestration in US forests and in forest products. However, large areas of public forestlands traditionally have been less intensively inventoried than privately owned forests. Thus, less information is available about their role as carbon sinks. We present estimates of carbon budgets on public forestlands of the 48 conterminous states, along with a discussion of the assumptions necessary to make such estimates. The forest carbon budget simulation model, FORCARB2, makes estimates for US forests primarily based on inventory data. We discuss methods to develop consistent carbon budget estimates from inventory data at varying levels of detail. Total carbon stored on public forestlands in the conterminous US increased from 16.3 Gt in 1953 to the present total of 19.5 Gt, while area increased from 87.1 million hactares to 92.1 million hactares. At the same time the proportion of carbon on public forestlands relative to all forests increased from 35% to 37%. Projections for the next 40 years depend on scenarios of management influences on growth and harvest.


Asunto(s)
Carbono/análisis , Efecto Invernadero , Propiedad , Sector Público , Árboles , Monitoreo del Ambiente , Predicción , Agricultura Forestal/historia , Historia del Siglo XX , Historia del Siglo XXI , Estados Unidos
12.
Environ Pollut ; 116 Suppl 1: S25-30, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11833911

RESUMEN

Down deadwood (DDW) is a carbon component important in the function and structure of forest ecosystems, but estimating DDW is problematic because these data are not widely available in forest inventory databases. However, DDW data were collected on USDA Forest Service Forest Inventory and Analysis (FIA) plots during Maine's 1995 inventory. This study examines ways to predict DDW biomass from other FIA variables so that DDW could be estimated without tedious measurement. Our results include a regression model that predicts DDW as a function of stand size class, basal area of dead and cut trees, and dummy variables for forest type and forest industry ownership. We also found DDW similar to FIA's standing-tree mortality at a statewide scale.


Asunto(s)
Carbono/metabolismo , Monitoreo del Ambiente/estadística & datos numéricos , Agricultura Forestal , Modelos Teóricos , Árboles , Biomasa , Carbono/análisis , Recolección de Datos , Predicción , Maine , Mortalidad , Análisis de Regresión , Madera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...