Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 10: 1381, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824325

RESUMEN

Hot-water immersion following exercise in a temperate environment can elicit heat acclimation in endurance-trained individuals. However, a delay between exercise cessation and immersion is likely a common occurrence in practice. Precisely how such a delay potentially alters hot-water immersion mediated acute physiological responses (e.g., total heat-load) remains unexplored. Such data would aid in optimizing prescription of post-exercise hot-water immersion in cool environments, relative to heat acclimation goals. Twelve male recreational runners (mean ± SD; age: 38 ± 13 years, height: 180 ± 7 cm, body mass: 81 ± 13.7 kg, body fat: 13.9 ± 3.5%) completed three separate 40-min treadmill runs (18°C), followed by either a 10 min (10M), 1 h (1H), or 8 h (8H) delay, prior to a 30-min hot-water immersion (39°C), with a randomized crossover design. Core and skin temperatures, heart rate, sweat, and perceptual responses were measured across the trials. Mean core temperature during immersion was significantly lower in 1H (37.39 ± 0.30°C) compared to 10M (37.83 ± 0.24°C; p = 0.0032) and 8H (37.74 ± 0.19°C; p = 0.0140). Mean skin temperature was significantly higher in 8H (32.70 ± 0.41°C) compared to 10M (31.93 ± 0.60°C; p = 0.0042) at the end of the hot-water immersion. Mean and maximal heart rates were also higher during immersion in 10M compared to 1H and 8H (p < 0.05), despite no significant differences in the sweat or perceptual responses. The shortest delay between exercise and immersion (10M) provoked the greatest heat-load during immersion. However, performing the hot-water immersion in the afternoon (8H), which coincided with peak circadian body temperature, provided a larger heat-load stimulus than the 1 h delay (1H).

2.
Temperature (Austin) ; 5(3): 267-275, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30377642

RESUMEN

This investigation assessed performance, physiological and perceptual responses to wearing additional clothing during endurance training for two-weeks in temperate environments, to determine if this approach could be used as a practical, alternative, heat acclimation strategy for athletes. Fifteen trained male triathletes assigned to performance-matched groups completed a two-week unsupervised endurance cycling and running program in either (i) shorts and a short sleeve top (CON; n = 8) or (ii) additional clothing of full-length pants, a "winter" jacket and gloves made from nylon, polyurethane and polyester (AC; n = 7). Participants completed three separate (i.e. familiarisation, pre-program and post-program), identical, pre-loaded cycling time-trials (20 min at 180 W followed by a 40 min self-paced time trial) in 32.5 ± 0.1°C and 55 ± 6% RH. Core and skin temperatures, heart rate, sweat rate, perceived exertion, thermal sensation and thermal comfort were measured across the pre-loaded time trials, and heart rate and thermal sensation were measured across the training program. All of the participants recorded in their diaries that they completed all of the programmed training sessions in the required attire. Mean thermal sensation was most likely hotter in AC (5.5 ± 0.4 AU) compared to CON (4.4 ± 0.4 AU; ES = 1.61, ± 0.68) during the training sessions. However, follow up tests revealed no physiological or perceptual signs of heat acclimation, and the change in time-trial performance from pre-post between groups was trivial (CON: -3.5 ± 12.0 W, AC: -4.1 ± 9.6 W; difference = -0.7%, ± 5.4%). Training in additional clothing for two-weeks in a temperate environment was not an effective heat acclimation strategy for triathletes.

3.
Front Physiol ; 9: 1851, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618849

RESUMEN

Heat acclimation protocols-both active and passive-have been employed by athletes in an effort to attenuate the detrimental effects of heat stress on physical capacities and sports performance. Active strategies have been extensively reviewed, but have various practical and economic limitations. The purpose of this review was therefore to provide an overview of the passive strategies that have received less attention, yet may be more practical or economically viable; recommendations for athletes are also provided. With a systematic search of the relevant databases ending in June 2018, 16 articles on passive heat acclimation that met the inclusion criteria were included in the review. The review highlighted that passive heat acclimation strategies can successfully induce heat adaptations, evident by reports of improved exercise performance, thermoregulatory, cardiovascular, and perceptual responses accompanying such interventions. Based on the review it is apparent that the use of sauna, hot-water immersion and environmental chambers may be used to provide heat stress under passive conditions, for the purpose of acclimation. To maximize the thermoregulatory-adaptive responses, exercise bouts should be employed prior to passive heat stress, rather than passive heating alone, with a minimal delay between exercise and the application of heat stress. Heating bouts should have a minimum duration of 30 min per session and be employed on consecutive days, when possible, with a minimum of 6-7 exposures to induce adaptation. This review identified that information regarding the magnitude of performance changes that can occur, as well as the perceptual responses to passive heating protocols is limited. Future research should investigate the use of passive heat exposures before and/or after repeated heat training sessions, to assess if a further boost to heat adaptation can be achieved with this strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA