Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 52(33): 8048-53, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24513756

RESUMEN

We demonstrate a variation of pump-probe spectroscopy that is particularly useful for laser frequency stabilization. The polarization-enhanced absorption spectroscopy (POLEAS) signal provides a significant improvement in signal-to-noise ratio over saturated absorption spectroscopy (SAS) for the important and commonly used atomic cycling transitions. The improvements can directly increase the short-term stability of a laser frequency lock, given sufficient servo loop bandwidth. The long-term stability of the POLEAS method, which is limited by environmental sensitivities, is comparable to that of SAS. The POLEAS signal is automatically Doppler-free, without requiring a separate Doppler subtraction beam, and lends itself to straightforward compact packaging. Finally, by increasing the amplitude of the desired (cycling) peak, while reducing the amplitude of all other peaks in the manifold, the POLEAS method eases the implementation of laser auto-locking schemes.

2.
Artículo en Inglés | MEDLINE | ID: mdl-20211776

RESUMEN

This paper describes the new twin laser-cooled Cs fountain primary frequency standards NIST-F2 and ITCsF2, and presents some of their design features. Most significant is a cryogenic microwave interrogation region which dramatically reduces the blackbody radiation shift. We also present a preliminary accuracy evaluation of IT-CsF2.

3.
Artículo en Inglés | MEDLINE | ID: mdl-17186920

RESUMEN

In atomic fountain primary frequency standards, the atoms ideally are subjected to microwave fields resonant with the ground-state, hyperfine splitting only during the two pulses of Ramsey's separated oscillatory field measurement scheme. As a practical matter, however, stray microwave fields can be present that shift the frequency of the central Ramsey fringe and, therefore, adversely affect the accuracy of the standard. We investigate these uncontrolled stray fields here and show that the frequency errors can be measured, and indeed even the location within the standard determined by the behavior of the measured frequency with respect to microwave power in the Ramsey cavity. Experimental results that agree with the theory are presented as well.


Asunto(s)
Guías como Asunto , Microondas , Modelos Químicos , Ondas de Radio , Estándares de Referencia , Factores de Tiempo , Simulación por Computador , Internacionalidad , Vibración
4.
Artículo en Inglés | MEDLINE | ID: mdl-16964908

RESUMEN

The presence of spurious spectral components in the microwave excitation may induce frequency shifts in an atomic fountain frequency standard. We discuss how such shifts behave as a function of power variations of the excitation carrier and in the spur-to-carrier ratio. The discussion here is limited to the case of single-sideband spurs, which are generally much more troublesome due to their ability to cause frequency shifts. We find an extremely rich and unintuitive behavior of these frequency shifts. We also discuss how pulsed operation, typical of today's fountain frequency standards, relates to frequency shifts caused by spurs in the microwave spectrum. The conclusion of these investigations is that it is, at best, difficult to use elevated power microwaves in fountain frequency standards to test for the presence of spurs in the microwave spectrum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA