Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Phys Lipids ; 192: 41-50, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26241882

RESUMEN

In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: "whatever the radiation from Be may be, it has most remarkable properties." Where it concerns hydrogen-rich biological materials, the "most remarkable" property is the neutron's differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, imparting sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. This article describes recent biomembranes research using a variety of neutron scattering techniques.


Asunto(s)
Membrana Dobles de Lípidos/química , Neutrones , Temperatura , Deuterio/química , Hidrógeno/análisis , Simulación de Dinámica Molecular , Dispersión de Radiación , Termodinámica
2.
Proc Natl Acad Sci U S A ; 102(18): 6320-5, 2005 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-15851688

RESUMEN

The mechanisms by which a cell uses and adapts its functional membrane organization are poorly understood and are the subject of ongoing investigation and discussion. Here, we study one proposed mechanism: the crosslinking of membrane components. In immune cell signaling (and other membrane-associated processes), a small change in the clustering of specific membrane proteins can lead to large-scale reorganizations that involve numerous other membrane components. We have investigated the large-scale physical effect of crosslinking a minor membrane component, the ganglioside GM1, in simple lipid models of the plasma membrane containing sphingomyelin, cholesterol, and phosphatidylcholine. We observe that crosslinking GM1 can cause uniform membranes to phase-separate into large, coexistent liquid ordered and liquid disordered membrane domains. We also find that this lipid separation causes a dramatic redistribution of a transmembrane peptide, consistent with a raft model of membrane organization. These experiments demonstrate a mechanism that could contribute to the effects of crosslinking observed in cellular processes: Domains induced by clustering a small number of proteins or lipids might rapidly reorganize many other membrane proteins.


Asunto(s)
Membrana Celular/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Gangliósido G(M1)/metabolismo , Microdominios de Membrana/metabolismo , Transducción de Señal/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Fluorescencia , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA