Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 20(1): e1011054, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38236837

RESUMEN

Living in dynamic environments such as the social domain, where interaction with others determines the reproductive success of individuals, requires the ability to recognize opportunities to obtain natural rewards and cope with challenges that are associated with achieving them. As such, actions that promote survival and reproduction are reinforced by the brain reward system, whereas coping with the challenges associated with obtaining these rewards is mediated by stress-response pathways, the activation of which can impair health and shorten lifespan. While much research has been devoted to understanding mechanisms underlying the way by which natural rewards are processed by the reward system, less attention has been given to the consequences of failure to obtain a desirable reward. As a model system to study the impact of failure to obtain a natural reward, we used the well-established courtship suppression paradigm in Drosophila melanogaster as means to induce repeated failures to obtain sexual reward in male flies. We discovered that beyond the known reduction in courtship actions caused by interaction with non-receptive females, repeated failures to mate induce a stress response characterized by persistent motivation to obtain the sexual reward, reduced male-male social interaction, and enhanced aggression. This frustrative-like state caused by the conflict between high motivation to obtain sexual reward and the inability to fulfill their mating drive impairs the capacity of rejected males to tolerate stressors such as starvation and oxidative stress. We further show that sensitivity to starvation and enhanced social arousal is mediated by the disinhibition of a small population of neurons that express receptors for the fly homologue of neuropeptide Y. Our findings demonstrate for the first time the existence of social stress in flies and offers a framework to study mechanisms underlying the crosstalk between reward, stress, and reproduction in a simple nervous system that is highly amenable to genetic manipulation.


Asunto(s)
Drosophila melanogaster , Neuropéptidos , Conducta Sexual Animal , Humanos , Animales , Femenino , Masculino , Drosophila melanogaster/genética , Conducta Sexual Animal/fisiología , Reproducción/genética , Recompensa , Neuronas/metabolismo
2.
J Exp Biol ; 223(Pt 24)2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33268534

RESUMEN

Social interactions pivot on an animal's experiences, internal states and feedback from others. This complexity drives the need for precise descriptions of behavior to dissect the fine detail of its genetic and neural circuit bases. In laboratory assays, male Drosophila melanogaster reliably exhibit aggression, and its extent is generally measured by scoring lunges, a feature of aggression in which one male quickly thrusts onto his opponent. Here, we introduce an explicit approach to identify both the onset and reversals in hierarchical status between opponents and observe that distinct aggressive acts reproducibly precede, concur or follow the establishment of dominance. We find that lunges are insufficient for establishing dominance. Rather, lunges appear to reflect the dominant state of a male and help in maintaining his social status. Lastly, we characterize the recurring and escalating structure of aggression that emerges through subsequent reversals in dominance. Collectively, this work provides a framework for studying the complexity of agonistic interactions in male flies, enabling its neurogenetic basis to be understood with precision.


Asunto(s)
Agresión , Drosophila melanogaster , Animales , Conducta Animal , Drosophila melanogaster/genética , Jerarquia Social , Masculino , Predominio Social
3.
Neuron ; 102(5): 1025-1036.e6, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31072787

RESUMEN

Female behavior changes profoundly after mating. In Drosophila, the mechanisms underlying the long-term changes led by seminal products have been extensively studied. However, the effect of the sensory component of copulation on the female's internal state and behavior remains elusive. We pursued this question by dissociating the effect of coital sensory inputs from those of male ejaculate. We found that the sensory inputs of copulation cause a reduction of post-coital receptivity in females, referred to as the "copulation effect." We identified three layers of a neural circuit underlying this phenomenon. Abdominal neurons expressing the mechanosensory channel Piezo convey the signal of copulation to female-specific ascending neurons, LSANs, in the ventral nerve cord. LSANs relay this information to neurons expressing myoinhibitory peptides in the brain. We hereby provide a neural mechanism by which the experience of copulation facilitates females encoding their mating status, thus adjusting behavior to optimize reproduction.


Asunto(s)
Encéfalo/metabolismo , Copulación/fisiología , Proteínas de Drosophila/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Neuronas/metabolismo , Abdomen , Animales , Encéfalo/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Femenino , Ganglios Sensoriales/metabolismo , Ganglios Sensoriales/fisiología , Canales Iónicos/fisiología , Vías Nerviosas , Neuronas/fisiología , Conducta Sexual Animal/fisiología
4.
BMC Biol ; 17(1): 30, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30967153

RESUMEN

BACKGROUND: Epigenetic mechanisms play fundamental roles in brain function and behavior and stressors such as social isolation can alter animal behavior via epigenetic mechanisms. However, due to cellular heterogeneity, identifying cell-type-specific epigenetic changes in the brain is challenging. Here, we report the first use of a modified isolation of nuclei tagged in specific cell type (INTACT) method in behavioral epigenetics of Drosophila melanogaster, a method we call mini-INTACT. RESULTS: Using ChIP-seq on mini-INTACT purified dopaminergic nuclei, we identified epigenetic signatures in socially isolated and socially enriched Drosophila males. Social experience altered the epigenetic landscape in clusters of genes involved in transcription and neural function. Some of these alterations could be predicted by expression changes of four transcription factors and the prevalence of their binding sites in several clusters. These transcription factors were previously identified as activity-regulated genes, and their knockdown in dopaminergic neurons reduced the effects of social experience on sleep. CONCLUSIONS: Our work enables the use of Drosophila as a model for cell-type-specific behavioral epigenetics and establishes that social environment shifts the epigenetic landscape in dopaminergic neurons. Four activity-related transcription factors are required in dopaminergic neurons for the effects of social environment on sleep.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Drosophila melanogaster/genética , Epigénesis Genética/genética , Genética Conductual/métodos , Medio Social , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epigenómica/métodos , Masculino , Modelos Animales , Sueño/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(5): 1099-1104, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339481

RESUMEN

Multiple studies have investigated the mechanisms of aggressive behavior in Drosophila; however, little is known about the effects of chronic fighting experience. Here, we investigated if repeated fighting encounters would induce an internal state that could affect the expression of subsequent behavior. We trained wild-type males to become winners or losers by repeatedly pairing them with hypoaggressive or hyperaggressive opponents, respectively. As described previously, we observed that chronic losers tend to lose subsequent fights, while chronic winners tend to win them. Olfactory conditioning experiments showed that winning is perceived as rewarding, while losing is perceived as aversive. Moreover, the effect of chronic fighting experience generalized to other behaviors, such as gap-crossing and courtship. We propose that in response to repeatedly winning or losing aggressive encounters, male flies form an internal state that displays persistence and generalization; fight outcomes can also have positive or negative valence. Furthermore, we show that the activities of the PPL1-γ1pedc dopaminergic neuron and the MBON-γ1pedc>α/ß mushroom body output neuron are required for aversion to an olfactory cue associated with losing fights.


Asunto(s)
Agresión/fisiología , Conducta Animal/fisiología , Drosophila melanogaster/fisiología , Conducta Sexual Animal/fisiología , Animales , Análisis por Conglomerados , Conducta Competitiva , Cruzamientos Genéticos , Femenino , Masculino , Memoria , Movimiento , Neuronas/metabolismo , Odorantes , Bulbo Olfatorio , Asunción de Riesgos , Factores de Tiempo
6.
Proc Natl Acad Sci U S A ; 114(38): E8091-E8099, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28874527

RESUMEN

In their classic experiments, Olds and Milner showed that rats learn to lever press to receive an electric stimulus in specific brain regions. This led to the identification of mammalian reward centers. Our interest in defining the neuronal substrates of reward perception in the fruit fly Drosophila melanogaster prompted us to develop a simpler experimental approach wherein flies could implement behavior that induces self-stimulation of specific neurons in their brains. The high-throughput assay employs optogenetic activation of neurons when the fly occupies a specific area of a behavioral chamber, and the flies' preferential occupation of this area reflects their choosing to experience optogenetic stimulation. Flies in which neuropeptide F (NPF) neurons are activated display preference for the illuminated side of the chamber. We show that optogenetic activation of NPF neuron is rewarding in olfactory conditioning experiments and that the preference for NPF neuron activation is dependent on NPF signaling. Finally, we identify a small subset of NPF-expressing neurons located in the dorsomedial posterior brain that are sufficient to elicit preference in our assay. This assay provides the means for carrying out unbiased screens to map reward neurons in flies.


Asunto(s)
Proteínas de Drosophila/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Neuropéptidos/genética
7.
Curr Biol ; 25(18): 2435-40, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26344091

RESUMEN

Hunger is a complex motivational state that drives multiple behaviors. The sensation of hunger is caused by an imbalance between energy intake and expenditure. One immediate response to hunger is increased food consumption. Hunger also modulates behaviors related to food seeking such as increased locomotion and enhanced sensory sensitivity in both insects and vertebrates. In addition, hunger can promote the expression of food-associated memory. Although progress is being made, how hunger is represented in the brain and how it coordinates these behavioral responses is not fully understood in any system. Here, we use Drosophila melanogaster to identify neurons encoding hunger. We found a small group of neurons that, when activated, induced a fed fly to eat as though it were starved, suggesting that these neurons are downstream of the metabolic regulation of hunger. Artificially activating these neurons also promotes appetitive memory performance in sated flies, indicating that these neurons are not simply feeding command neurons but likely play a more general role in encoding hunger. We determined that the neurons relevant for the feeding effect are serotonergic and project broadly within the brain, suggesting a possible mechanism for how various responses to hunger are coordinated. These findings extend our understanding of the neural circuitry that drives feeding and enable future exploration of how state influences neural activity within this circuit.


Asunto(s)
Drosophila melanogaster/fisiología , Hambre , Animales , Proteínas de Drosophila/metabolismo , Conducta Alimentaria , Femenino , Privación de Alimentos , Canales Iónicos , Masculino , Memoria , Motivación , Neuronas Serotoninérgicas/fisiología , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/metabolismo
8.
J Neurosci ; 35(26): 9638-47, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26134647

RESUMEN

The ability to use environmental cues to predict rewarding events is essential to survival. The basolateral amygdala (BLA) plays a central role in such forms of associative learning. Aberrant cue-reward learning is thought to underlie many psychopathologies, including addiction, so understanding the underlying molecular mechanisms can inform strategies for intervention. The transcriptional regulator LIM-only 4 (LMO4) is highly expressed in pyramidal neurons of the BLA, where it plays an important role in fear learning. Because the BLA also contributes to cue-reward learning, we investigated the role of BLA LMO4 in this process using Lmo4-deficient mice and RNA interference. Lmo4-deficient mice showed a selective deficit in conditioned reinforcement. Knockdown of LMO4 in the BLA, but not in the nucleus accumbens, recapitulated this deficit in wild-type mice. Molecular and electrophysiological studies identified a deficit in dopamine D2 receptor signaling in the BLA of Lmo4-deficient mice. These results reveal a novel, LMO4-dependent transcriptional program within the BLA that is essential to cue-reward learning.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aprendizaje por Asociación/fisiología , Conducta de Elección/fisiología , Señales (Psicología) , Proteínas con Dominio LIM/metabolismo , Recompensa , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Complejo Nuclear Basolateral/citología , Condicionamiento Operante/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Proteínas con Dominio LIM/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/fisiología , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Sacarosa/administración & dosificación
9.
Elife ; 3: e04580, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25535794

RESUMEN

Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection.


Asunto(s)
Conducta de Elección , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Memoria , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/inervación , Neuronas/fisiología , Animales , Conducta Apetitiva/efectos de la radiación , Aprendizaje por Asociación/efectos de la radiación , Reacción de Prevención/efectos de la radiación , Conducta Animal/efectos de la radiación , Conducta de Elección/efectos de la radiación , Luz , Memoria/efectos de la radiación , Modelos Neurológicos , Cuerpos Pedunculados/efectos de la radiación , Neuronas/efectos de la radiación , Odorantes , Sueño/efectos de la radiación , Factores de Tiempo , Visión Ocular
10.
PLoS One ; 9(1): e87714, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498174

RESUMEN

Epidermal Growth Factor Receptor (EGFR) signaling has a conserved role in ethanol-induced behavior in flies and mice, affecting ethanol-induced sedation in both species. However it is not known what other effects EGFR signaling may have on ethanol-induced behavior, or what roles other Receptor Tyrosine Kinase (RTK) pathways may play in ethanol induced behaviors. We examined the effects of both the EGFR and Fibroblast Growth Factor Receptor (FGFR) RTK signaling pathways on ethanol-induced enhancement of locomotion, a behavior distinct from sedation that may be associated with the rewarding effects of ethanol. We find that both EGFR and FGFR genes influence ethanol-induced locomotion, though their effects are opposite - EGFR signaling suppresses this behavior, while FGFR signaling promotes it. EGFR signaling affects development of the Drosophila mushroom bodies in conjunction with the JNK MAP kinase basket (bsk), and with the Ste20 kinase tao, and we hypothesize that the EGFR pathway affects ethanol-induced locomotion through its effects on neuronal development. We find, however, that FGFR signaling most likely affects ethanol-induced behavior through a different mechanism, possibly through acute action in adult neurons.


Asunto(s)
Conducta Animal/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Etanol/farmacología , Cuerpos Pedunculados/enzimología , Receptores de Péptidos de Invertebrados/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Receptores ErbB/genética , Locomoción/efectos de los fármacos , Locomoción/genética , Ratones , Cuerpos Pedunculados/citología , Receptores de Péptidos de Invertebrados/genética , Transducción de Señal/genética
11.
Proc Natl Acad Sci U S A ; 110(52): 21153-8, 2013 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-24324162

RESUMEN

The neural circuits that mediate behavioral choice evaluate and integrate information from the environment with internal demands and then initiate a behavioral response. Even circuits that support simple decisions remain poorly understood. In Drosophila melanogaster, oviposition on a substrate containing ethanol enhances fitness; however, little is known about the neural mechanisms mediating this important choice behavior. Here, we characterize the neural modulation of this simple choice and show that distinct subsets of dopaminergic neurons compete to either enhance or inhibit egg-laying preference for ethanol-containing food. Moreover, activity in α'ß' neurons of the mushroom body and a subset of ellipsoid body ring neurons (R2) is required for this choice. We propose a model where competing dopaminergic systems modulate oviposition preference to adjust to changes in natural oviposition substrates.


Asunto(s)
Conducta de Elección/fisiología , Neuronas Dopaminérgicas/fisiología , Drosophila melanogaster/fisiología , Etanol/metabolismo , Oviposición/fisiología , Análisis de Varianza , Animales , Neuronas Dopaminérgicas/metabolismo , Femenino , Fermentación , Frutas/metabolismo , Cuerpos Pedunculados/fisiología
13.
Annu Rev Neurosci ; 36: 121-38, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23642133

RESUMEN

Animal models have been widely used to gain insight into the mechanisms underlying the acute and long-term effects of alcohol exposure. The fruit fly Drosophila melanogaster encounters ethanol in its natural habitat and possesses many adaptations that allow it to survive and thrive in ethanol-rich environments. Several assays to study ethanol-related behaviors in flies, ranging from acute intoxication to self-administration and reward, have been developed in the past 20 years. These assays have provided the basis for studying the physiological and behavioral effects of ethanol and for identifying genes mediating these effects. In this review we describe the ecological relationship between flies and ethanol, the effects of ethanol on fly development and behavior, the use of flies as a model for alcohol addiction, and the interaction between ethanol and social behavior. We discuss these advances in the context of their utility to help decipher the mechanisms underlying the diverse effects of ethanol, including those that mediate ethanol dependence and addiction in humans.


Asunto(s)
Alcoholismo/fisiopatología , Evolución Biológica , Modelos Animales de Enfermedad , Etanol/efectos adversos , Alcoholismo/psicología , Animales , Drosophila melanogaster , Etanol/administración & dosificación , Humanos , Recompensa , Autoadministración
14.
J Neurosci ; 33(19): 8134-43, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23658154

RESUMEN

In both mammalian and insect models of ethanol intoxication, high doses of ethanol induce motor impairment and eventually sedation. Sensitivity to the sedative effects of ethanol is inversely correlated with risk for alcoholism. However, the genes regulating ethanol sensitivity are largely unknown. Based on a previous genetic screen in Drosophila for ethanol sedation mutants, we identified a novel gene, tank (CG15626), the homolog of the mammalian tumor suppressor EI24/PIG8, which has a strong role in regulating ethanol sedation sensitivity. Genetic and behavioral analyses revealed that tank acts in the adult nervous system to promote ethanol sensitivity. We localized the function of tank in regulating ethanol sensitivity to neurons within the pars intercerebralis that have not been implicated previously in ethanol responses. We show that acutely manipulating the activity of all tank-expressing neurons, or of pars intercerebralis neurons in particular, alters ethanol sensitivity in a sexually dimorphic manner, since neuronal activation enhanced ethanol sedation in males, but not females. Finally, we provide anatomical evidence that tank-expressing neurons form likely synaptic connections with neurons expressing the neural sex determination factor fruitless (fru), which have been implicated recently in the regulation of ethanol sensitivity. We suggest that a functional interaction with fru neurons, many of which are sexually dimorphic, may account for the sex-specific effect induced by activating tank neurons. Overall, we have characterized a novel gene and corresponding set of neurons that regulate ethanol sensitivity in Drosophila.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Mutación/genética , Proteínas Supresoras de Tumor/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Proteínas Reguladoras de la Apoptosis/genética , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Canales Iónicos , Biología Molecular , Proteínas Nucleares/genética , Interferencia de ARN/fisiología , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo
15.
J Neurosci ; 33(9): 4044-54, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23447613

RESUMEN

In the fruit fly Drosophila melanogaster, as in mammals, acute exposure to a high dose of ethanol leads to stereotypical behavioral changes beginning with increased activity, followed by incoordination, loss of postural control, and eventually, sedation. The mechanism(s) by which ethanol impacts the CNS leading to ethanol-induced sedation and the genes required for normal sedation sensitivity remain largely unknown. Here we identify the gene apontic (apt), an Myb/SANT-containing transcription factor that is required in the nervous system for normal sensitivity to ethanol sedation. Using genetic and behavioral analyses, we show that apt mediates sensitivity to ethanol sedation by acting in a small set of neurons that express Corazonin (Crz), a neuropeptide likely involved in the physiological response to stress. The activity of Crz neurons regulates the behavioral response to ethanol, as silencing and activating these neurons affects sedation sensitivity in opposite ways. Furthermore, this effect is mediated by Crz, as flies with reduced crz expression show reduced sensitivity to ethanol sedation. Finally, we find that both apt and crz are rapidly upregulated by acute ethanol exposure. Thus, we have identified two genes and a small set of peptidergic neurons that regulate sensitivity to ethanol-induced sedation. We propose that Apt regulates the activity of Crz neurons and/or release of the neuropeptide during ethanol exposure.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Etanol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hipnóticos y Sedantes/farmacología , Neuronas/efectos de los fármacos , Neuropéptidos/metabolismo , Sistemas Neurosecretores/citología , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Encéfalo/citología , Proteínas de Unión al ADN/genética , Relación Dosis-Respuesta a Droga , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Metamorfosis Biológica/genética , Mutación/genética , Neuronas/metabolismo , Neuropéptidos/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética
16.
PLoS One ; 7(12): e50594, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23227189

RESUMEN

Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.


Asunto(s)
Proteínas de Drosophila/fisiología , Etanol/farmacología , MAP Quinasa Quinasa 4/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Secuencia de Bases , Conducta Animal , Cartilla de ADN , Drosophila , Inmunohistoquímica , MAP Quinasa Quinasa 4/genética , Ratones , Ratones Endogámicos C57BL , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Proc Natl Acad Sci U S A ; 109(51): 21087-92, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23213244

RESUMEN

In mammalian and insect models of ethanol intoxication, low doses of ethanol stimulate locomotor activity whereas high doses induce sedation. Sex differences in acute ethanol responses, which occur in humans, have not been characterized in Drosophila. In this study, we find that male flies show increased ethanol hyperactivity and greater resistance to ethanol sedation compared with females. We show that the sex determination gene transformer (tra) acts in the developing nervous system, likely through regulation of fruitless (fru), to at least partially mediate the sexual dimorphism in ethanol sedation. Although pharmacokinetic differences may contribute to the increased sedation sensitivity of females, neuronal tra expression regulates ethanol sedation independently of ethanol pharmacokinetics. We also show that acute activation of fru-expressing neurons affects ethanol sedation, further supporting a role for fru in regulating this behavior. Thus, we have characterized previously undescribed sex differences in behavioral responses to ethanol, and implicated fru in mediating a subset of these differences.


Asunto(s)
Drosophila melanogaster/metabolismo , Etanol/farmacocinética , Regulación de la Expresión Génica , Caracteres Sexuales , Intoxicación Alcohólica , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Femenino , Masculino , Modelos Estadísticos , Neuronas/efectos de los fármacos , Factores Sexuales
18.
PLoS One ; 7(11): e48967, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23145041

RESUMEN

From a genetic screen for Drosophila melanogaster mutants with altered ethanol tolerance, we identified intolerant (intol), a novel allele of discs large 1 (dlg1). Dlg1 encodes Discs Large 1, a MAGUK (Membrane Associated Guanylate Kinase) family member that is the highly conserved homolog of mammalian PSD-95 and SAP97. The intol mutation disrupted specifically the expression of DlgS97, a SAP97 homolog, and one of two major protein isoforms encoded by dlg1 via alternative splicing. Expression of the major isoform, DlgA, a PSD-95 homolog, appeared unaffected. Ethanol tolerance in the intol mutant could be partially restored by transgenic expression of DlgS97, but not DlgA, in specific neurons of the fly's brain. Based on co-immunoprecipitation, DlgS97 forms a complex with N-methyl-D-aspartate (NMDA) receptors, a known target of ethanol. Consistent with these observations, flies expressing reduced levels of the essential NMDA receptor subunit dNR1 also showed reduced ethanol tolerance, as did mutants in the gene calcium/calmodulin-dependent protein kinase (caki), encoding the fly homolog of mammalian CASK, a known binding partner of DlgS97. Lastly, mice in which SAP97, the mammalian homolog of DlgS97, was conditionally deleted in adults failed to develop rapid tolerance to ethanol's sedative/hypnotic effects. We propose that DlgS97/SAP97 plays an important and conserved role in the development of tolerance to ethanol via NMDA receptor-mediated synaptic plasticity.


Asunto(s)
Etanol/toxicidad , Guanilato-Quinasas/genética , Proteínas de la Membrana/genética , Neuronas/metabolismo , Alelos , Empalme Alternativo , Animales , Homólogo 1 de la Proteína Discs Large , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Guanilato-Quinasas/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Isoformas de Proteínas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
19.
Genetics ; 192(2): 521-32, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22798487

RESUMEN

Understanding sensory systems that perceive environmental inputs and neural circuits that select appropriate motor outputs is essential for studying how organisms modulate behavior and make decisions necessary for survival. Drosophila melanogaster oviposition is one such important behavior, in which females evaluate their environment and choose to lay eggs on substrates they may find aversive in other contexts. We employed neurogenetic techniques to characterize neurons that influence the choice between repulsive positional and attractive egg-laying responses toward the bitter-tasting compound lobeline. Surprisingly, we found that neurons expressing Gr66a, a gustatory receptor normally involved in avoidance behaviors, receive input for both attractive and aversive preferences. We hypothesized that these opposing responses may result from activation of distinct Gr66a-expressing neurons. Using tissue-specific rescue experiments, we found that Gr66a-expressing neurons on the legs mediate positional aversion. In contrast, pharyngeal taste cells mediate the egg-laying attraction to lobeline, as determined by analysis of mosaic flies in which subsets of Gr66a neurons were silenced. Finally, inactivating mushroom body neurons disrupted both aversive and attractive responses, suggesting that this brain structure is a candidate integration center for decision-making during Drosophila oviposition. We thus define sensory and central neurons critical to the process by which flies decide where to lay an egg. Furthermore, our findings provide insights into the complex nature of gustatory perception in Drosophila. We show that tissue-specific activation of bitter-sensing Gr66a neurons provides one mechanism by which the gustatory system differentially encodes aversive and attractive responses, allowing the female fly to modulate her behavior in a context-dependent manner.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Oviposición , Receptores de Superficie Celular/genética , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Conducta Alimentaria/fisiología , Femenino , Lobelina/farmacología , Cuerpos Pedunculados/metabolismo , Neuronas/metabolismo , Especificidad de Órganos , Oviposición/genética , Oviposición/fisiología , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/fisiología , Células Receptoras Sensoriales/metabolismo , Conducta Sexual Animal/fisiología , Percepción del Gusto/genética , Percepción del Gusto/fisiología
20.
PLoS One ; 7(4): e34559, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22509321

RESUMEN

Pavlovian fear conditioning is an associative learning paradigm in which mice learn to associate a neutral conditioned stimulus with an aversive unconditioned stimulus. In this study, we demonstrate a novel role for the transcriptional regulator Lmo4 in fear learning. LMO4 is predominantly expressed in pyramidal projection neurons of the basolateral complex of the amygdala (BLC). Mice heterozygous for a genetrap insertion in the Lmo4 locus (Lmo4gt/+), which express 50% less Lmo4 than their wild type (WT) counterparts display enhanced freezing to both the context and the cue in which they received the aversive stimulus. Small-hairpin RNA-mediated knockdown of Lmo4 in the BLC, but not the dentate gyrus region of the hippocampus recapitulated this enhanced conditioning phenotype, suggesting an adult- and brain region-specific role for Lmo4 in fear learning. Immunohistochemical analyses revealed an increase in the number of c-Fos positive puncta in the BLC of Lmo4gt/+ mice in comparison to their WT counterparts after fear conditioning. Lastly, we measured anxiety-like behavior in Lmo4gt/+ mice and in mice with BLC-specific downregulation of Lmo4 using the elevated plus maze, open field, and light/dark box tests. Global or BLC-specific knockdown of Lmo4 did not significantly affect anxiety-like behavior. These results suggest a selective role for LMO4 in the BLC in modulating learned but not unlearned fear.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Amígdala del Cerebelo/metabolismo , Condicionamiento Psicológico/fisiología , Miedo/psicología , Proteínas con Dominio LIM/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/fisiología , Animales , Conducta Animal/fisiología , Señales (Psicología) , Miedo/fisiología , Técnicas de Silenciamiento del Gen , Proteínas con Dominio LIM/deficiencia , Proteínas con Dominio LIM/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...