Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Basic Microbiol ; : e202300773, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712352

RESUMEN

Wastewater-based epidemiology provides temporal and spatial information about the health status of a population. The objective of this study was to analyze and report the epidemiological dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the province of Tucumán, Argentina during the second and third waves of coronavirus disease 2019 (COVID-19) between April 2021 and March 2022. The study aimed to quantify SARS-CoV-2 RNA in wastewater, correlating it with clinically reported COVID-19 cases. Wastewater samples (n = 72) were collected from 16 sampling points located in three cities of Tucumán (San Miguel de Tucumán, Yerba Buena y Banda del Río Salí). Detection of viral nucleocapsid markers (N1 gene) was carried out using one-step reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Viral loads were determined for each positive sample using a standard curve. A positive correlation (p < 0.05) was observed between viral load (copies/mL) and the clinically confirmed COVID-19 cases reported at specific sampling points in San Miguel de Tucumán (SP4, SP7, and SP8) in both months, May and June. Indeed, the high viral load concurred with the peaks of COVID-19 cases. This method allowed us to follow the behavior of SARS-CoV-2 infection during epidemic outbreaks. Thus, wastewater monitoring is a valuable epidemiological indicator that enables the anticipation of increases in COVID-19 cases and tracking the progress of the pandemic. SARS-CoV-2 genome-based surveillance should be implemented as a routine practice to prepare for any future surge in infections.

2.
Front Microbiol ; 15: 1343541, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476941

RESUMEN

Inorganic phosphate (Pi) concentration modulates polyphosphate (polyP) levels in diverse bacteria, affecting their physiology and survival. Lactiplantibacillus paraplantarum CRL 1905 is a lactic acid bacterium isolated from quinoa sourdough with biotechnological potential as starter, for initiating fermentation processes in food, and as antimicrobial-producing organism. The aim of this work was to evaluate the influence of the environmental Pi concentration on different physiological and molecular aspects of the CRL 1905 strain. Cells grown in a chemically defined medium containing high Pi (CDM + P) maintained elevated polyP levels up to late stationary phase and showed an enhanced bacterial survival and tolerance to oxidative stress. In Pi sufficiency condition (CDM-P), cells were ~ 25% longer than those grown in CDM + P, presented membrane vesicles and a ~ 3-fold higher capacity to form biofilm. Proteomic analysis indicated that proteins involved in the "carbohydrate transport and metabolism" and "energy production and conversion" categories were up-regulated in high Pi stationary phase cells, implying an active metabolism in this condition. On the other hand, stress-related chaperones and enzymes involved in cell surface modification were up-regulated in the CDM-P medium. Our results provide new insights to understand the CRL 1905 adaptations in response to differential Pi conditions. The adjustment of environmental Pi concentration constitutes a simple strategy to improve the cellular fitness of L. paraplantarum CRL 1905, which would benefit its potential as a microbial cell factory.

3.
ACS Omega ; 8(50): 48042-48049, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38144080

RESUMEN

In the past 50 years, life expectancy has increased by more than 20 years. One consequence of this increase in longevity is the rise of age-related diseases such as dementia. Alzheimer's disease (AD) is the most common form of dementia, accounting for 60-70% of cases. AD pathogenesis is not restricted to the neuronal compartment but includes strong interactions with other brain cells, particularly microglia triggering the release of inflammatory mediators, which contribute to disease progression and severity. There is growing evidence revealing the diverse clinical benefits of postbiotics in many prevalent conditions, including neurodegenerative diseases. Here, we tested the ability of bacterial conditioned media (BCM) derived from selected lactic acid bacteria (LAB) strains to regulate core mechanisms relevant to AD pathophysiology in the microglia cell line BV-2. Levilactobacillus brevis CRL 2013, chosen for its efficient production of the neurotransmitter GABA, and Lactobacillus delbrueckii subsp. lactis CRL 581, known for its anti-inflammatory properties, were selected alongside Enterococcus mundtii CRL 35, a LAB strain that can significantly modulate cytokine production. BCM from all 3 strains displayed antioxidant capabilities, reducing oxidative stress triggered by beta-amyloid oligomers (oAß1-42). Additionally, BCM effectively mitigated the expression of inflammatory cytokines, namely, TNF-α, IL-1ß, and IL-6 triggered by oAß1-42. Furthermore, our study identified that BCM from CRL 581 inhibit the activity of acetylcholinesterase (AChE), a crucial enzyme in AD progression, in both human erythrocytes and mouse brain tissues. Notably, the inhibitory effect was mediated by low-molecular-weight components of the BCM. L. delbrueckii subsp. lactis CRL 581 emerged as a favorable candidate for production of postbiotics with potential benefits for AD therapy since it demonstrated potent antioxidant activity, reduction of cytokine expression, and partial AChE inhibition. On the other hand, E. mundtii CRL 35 showed that the antioxidant activity failed to inhibit AChE and caused induction of iNOS expression, rendering it unsuitable as a potential therapeutic for AD. This study unveils the potential benefits of LAB-derived postbiotics for the development of new avenues for therapeutic interventions for AD.

4.
Food Res Int ; 155: 111097, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35400469

RESUMEN

The synthesis of nanoparticles (NPs) by microorganisms is one of the most promising areas of research in modern nanotechnology since microorganisms can easily act as real nanofactories of industrially relevant compounds. Recent studies suggest that probiotic bacteria have an intrinsic potential to synthesize metal NPs when grown in the presence of metal ions. In such conditions, they can reduce metal ions through different biochemical mechanisms occurring both intra and extracellularly, and leading to the production of NPs. Different approaches have proposed the synthesis of silver, gold, titanium or selenium NPs from probiotics, with promising health related effects. However, their use for the production of iron and zinc NPs has been scarcely reported. Considering the nutritional relevance of iron and zinc, a thorough approach about the synthesis of iron and zinc NPs by probiotics was addressed, including the factors affecting the synthesis processes, the mechanisms of synthesis, and the physical and chemical characterization of NPs. The impact of products containing probiotics and minerals has applications in many different fields going beyond the food industry and representing a powerful strategy as economic engine for very diverse industries and countries.


Asunto(s)
Nanopartículas del Metal , Probióticos , Iones , Hierro , Nanopartículas del Metal/química , Zinc
5.
BMC Genom Data ; 22(1): 29, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34479493

RESUMEN

BACKGROUND: 6S RNA is a regulator of cellular transcription that tunes the metabolism of cells. This small non-coding RNA is found in nearly all bacteria and among the most abundant transcripts. Lactic acid bacteria (LAB) constitute a group of microorganisms with strong biotechnological relevance, often exploited as starter cultures for industrial products through fermentation. Some strains are used as probiotics while others represent potential pathogens. Occasional reports of 6S RNA within this group already indicate striking metabolic implications. A conceivable idea is that LAB with 6S RNA defects may metabolize nutrients faster, as inferred from studies of Echerichia coli. This may accelerate fermentation processes with the potential to reduce production costs. Similarly, elevated levels of secondary metabolites might be produced. Evidence for this possibility comes from preliminary findings regarding the production of surfactin in Bacillus subtilis, which has functions similar to those of bacteriocins. The prerequisite for its potential biotechnological utility is a general characterization of 6S RNA in LAB. RESULTS: We provide a genomic annotation of 6S RNA throughout the Lactobacillales order. It laid the foundation for a bioinformatic characterization of common 6S RNA features. This covers secondary structures, synteny, phylogeny, and product RNA start sites. The canonical 6S RNA structure is formed by a central bulge flanked by helical arms and a template site for product RNA synthesis. 6S RNA exhibits strong syntenic conservation. It is usually flanked by the replication-associated recombination protein A and the universal stress protein A. A catabolite responsive element was identified in over a third of all 6S RNA genes. It is known to modulate gene expression based on the available carbon sources. The presence of antisense transcripts could not be verified as a general trait of LAB 6S RNAs. CONCLUSIONS: Despite a large number of species and the heterogeneity of LAB, the stress regulator 6S RNA is well-conserved both from a structural as well as a syntenic perspective. This is the first approach to describe 6S RNAs and short 6S RNA-derived transcripts beyond a single species, spanning a large taxonomic group covering multiple families. It yields universal insights into this regulator and complements the findings derived from other bacterial model organisms.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Lactobacillales/genética , ARN Bacteriano/genética , ARN no Traducido/genética , Bacillus subtilis/genética , Secuencia Conservada/genética , Humanos , Sintenía/genética
6.
Front Immunol ; 12: 647049, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912172

RESUMEN

Myelosuppression is the major dose-limiting toxicity of cancer chemotherapy. There have been many attempts to find new strategies that reduce myelosuppression. The dietary supplementation with lactic acid bacteria (LAB) improved respiratory innate immune response and the resistance against respiratory pathogens in immunosupressed hosts. Although LAB viability is an important factor in achieving optimal protective effects, non-viable LAB are capable of stimulating immunity. In this work, we studied the ability of oral preventive administration of viable and non-viable Lactobacillus rhamnosus CRL1505 or L. plantarum CRL1506 (Lr05, Lr05NV, Lp06V or Lp06NV, respectively) to minimize myelosuppressive and immunosuppressive effects derived from chemotherapy. Cyclophosphamide (Cy) impaired steady-state myelopoiesis in lactobacilli-treated and untreated control mice. Lr05V, Lr05NV and Lp06V treatments were the most effective to induce the early recovery of bone marrow (BM) tissue architecture, leukocytes, myeloid, pool mitotic and post-mitotic, peroxidase positive, and Gr-1Low/High cells in BM. We selected the CRL1505 strain for being the one capable of maintaining its myelopoiesis-enhancing properties in its non-viable form. Although the CRL1505 treatments do not modify the Cy ability to induce apoptosis, both increased the incorporation of BrdU in BM cells. Consequently, Lr05NV and Lr05V treatments were able to promote early recovery of LSK cells (Lin-Sca-1+c-Kit+ cells), multipotent progenitors (Lin-Sca-1+c-Kit+CD34+ cells), and myeloid cells (Gr-1+Ly6G+Ly6C- cells) with respect to the untreated Cy control. In addition, these treatments were able to increase the frequency of IL17A-producing innate lymphoid cells in the intestinal lamina propria (IL-17A+RORγt+CD4-NKp46+ cells) after Cy injection. These results were correlated with an increase in the IL-17A serum levels, a GM-CSF high expression and a CXCL12 lower expression in BM. Therefore, both Lr05V and Lr05NV treatments are able to activate beneficially the IL-17A/GM-CSF axis and accelerate the recovery of Cy-induced immunosuppression by increasing BM myeloid precursors. We demonstrated for the first time the beneficial effect of CRL1505 strain on myelopoiesis affected by a chemotherapeutic drug. Furthermore, Lr05NV could be a good and safe resource for reducing chemotherapy-induced leukopenia. The results are a starting point for future research and open up broad prospects for future applications of the immunobiotics.


Asunto(s)
Ciclofosfamida/toxicidad , Huésped Inmunocomprometido/efectos de los fármacos , Lacticaseibacillus rhamnosus/inmunología , Lactobacillus/inmunología , Mielopoyesis/efectos de los fármacos , Probióticos/administración & dosificación , Administración Oral , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Huésped Inmunocomprometido/inmunología , Inmunosupresores/toxicidad , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Recuento de Leucocitos , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Linfocitos/metabolismo , Masculino , Ratones , Células Mieloides/efectos de los fármacos , Células Mieloides/inmunología , Mielopoyesis/inmunología
7.
Biochimie ; 168: 185-189, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31715214

RESUMEN

Lactobacillus coryniformis CRL 1001 and L. reuteri CRL 1098 have the complete genes necessary to synthesize pseudo-cobalamin as final product in a vitamin B12 free commercial medium. Unlike vitaminB12 (the most biologically active form), the pseudo-cobalamin contains adenine instead of 5,6-dimethlbenzimidazole (DMB) in the Coα-ligand. Considering the vitamin B12-gene clusters of these bacteria, the aim of this work was to analyze the production of corrinoids with DMB (vitamin B12) instead of adenine (pseudo-B12) as lower ligand base in a vitamin B12 free chemically defined medium (CDM) without purines. Genome-wide screening of genes related to purine metabolism showed that both strains possess all pur genes necessary for the synthesis of inositol monophosphate, the main precursor for purine biosynthesis. Accordingly, both strains were able to grow in B12 free CDM without purines, with the supplementation of different synthetic intermediaries. Isolated compounds with positive vitamin B12 activity were quantified and characterized by LC/MS-MS. Total corrinoids values were higher for both strains in comparison to those obtained in vitaminB12 free commercial medium. Interestingly, CRL 1001 strain synthesized cobalamin, suggesting that this strain is able to activate DMB as nitrogenous base instead adenine when it is in excess in a purine-free medium. The present paper represents the first demonstration of a partial metabolic shift to produce vitamin B12 in a Lactobacillus strain.


Asunto(s)
Lactobacillus/metabolismo , Limosilactobacillus reuteri/metabolismo , Purinas/metabolismo , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo , Medios de Cultivo/metabolismo , Redes y Vías Metabólicas
9.
Biochim Biophys Acta Gen Subj ; 1863(8): 1283-1291, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31059750

RESUMEN

BACKGROUND: The scope of the present work was to characterize the activity of class IIa bacteriocins in Listeria (L.) monocytogenes cells that constitutively express an activated form of PrfA, the virulence master regulator, since bacteriocin sensitivity was only characterized in saprophytic cells so far. The mannose phosphotransferase system (Man-PTS) has been shown to be the class IIa bacteriocin receptor in Listeria; hence, special attention was paid to its expression in virulent bacteria. METHODS: L. monocytogenes FBprfA* cells were obtained by transconjugation. Bacterial growth was studied in TSB and glucose containing-minimal medium. Sensitivity to antimicrobial peptides was assessed by killing curves. Membranes of L. monocytogenes FBprfA* cells were characterized using proteomic and lipidomic approaches. RESULTS: The mannose phosphotransferase system (Man-PTS) was downregulated upon expression of PrfA*, and these cells turned out to be more sensitive to enterocin CRL35 and pediocin PA-1, while not to nisin. Proteomic and lipidomic analysis showed differences between wild type (WT) and PrfA* strains. For instance, phosphatidic acid was only detected in PrfA* cells, whereas, there was a significant decline of plasmalogen-phosphatidylglycerol in the same strain. CONCLUSIONS: Our results support a model in which Man-PTS acts just as a docking molecule that brings class IIa bacteriocins to the plasma membrane. Furthermore, our results suggest that lipids play a crucial role in the mechanism of action of bacteriocins. GENERAL SIGNIFICANCE: This is the first demonstration of the link between L. monocytogenes virulence and the bacterial sensitivity toward pediocin-like peptides.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriocinas/metabolismo , Listeria monocytogenes/metabolismo , Factores de Terminación de Péptidos/metabolismo , Receptores de Superficie Celular/metabolismo , Medios de Cultivo , Glucosa/metabolismo , Listeria monocytogenes/crecimiento & desarrollo
10.
Microbiol Resour Announc ; 8(15)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975815

RESUMEN

Lactobacillus plantarum CRL681 was isolated from Argentinean artisanal fermented sausages. Here, the draft genome sequence of the CRL681 strain is described. The reads were assembled into contigs with a total estimated size of 3,370,224 bp. A total of 3,300 open reading frames (ORFs) were predicted, including 3,126 protein-coding sequences. The draft genome sequence of L. plantarum CRL681 will be useful for understanding the organism's metabolic activities and for biotechnological applications.

11.
Artículo en Inglés | MEDLINE | ID: mdl-30533786

RESUMEN

This report describes the draft genome sequence of Lactobacillus brevis TUCO-5E, a probiotic strain isolated from porcine maternal milk. The reads were generated by a whole-genome sequencing (WGS) strategy on an Illumina MiSeq sequencer and were assembled into contigs with a total estimated size of 2,461,089 bp. A total of 2,455 open reading frames (ORFs) were predicted, including 2,301 protein-coding sequences. The draft genome sequence of L. brevis TUCO-5E will be useful for further studies of specific genetic features and for understanding the mechanisms of its probiotic properties in the porcine host.

12.
Artículo en Inglés | MEDLINE | ID: mdl-30533893

RESUMEN

This report describes the draft genome sequences of Lactobacillus salivarius A3iob and Lactobacillus johnsonii CRL1647, probiotic strains isolated from the gut of honeybee Apis mellifera workers. The reads were generated by a whole-genome sequencing (WGS) strategy on an Illumina MiSeq sequencer and were assembled into contigs with total sizes of 2,054,490 and 2,137,413 bp for the A3iob and CRL1647 strains, respectively. The draft genome sequences of L. salivarius A3iob and L. johnsonii CRL1647 will be useful for further studies of the specific genetic features of these strains and for understanding the mechanisms of their probiotic properties.

13.
Front Immunol ; 9: 2178, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319634

RESUMEN

In lactic acid bacteria, the synthesis of exopolysaccharides (EPS) has been associated with some favorable technological properties as well as health-promoting benefits. Research works have shown the potential of EPS produced by lactobacilli to differentially modulate immune responses. However, most studies were performed in immune cells and few works have concentrated in the immunomodulatory activities of EPS in non-immune cells such as intestinal epithelial cells. In addition, the cellular and molecular mechanisms involved in the immunoregulatory effects of EPS have not been studied in detail. In this work, we have performed a genomic characterization of Lactobacillus delbrueckii subsp. delbrueckii TUA4408L and evaluated the immunomodulatory and antiviral properties of its acidic (APS) and neutral (NPS) EPS in porcine intestinal epithelial (PIE) cells. Whole genome sequencing allowed the analysis of the general features of L. delbrueckii TUA4408L genome as well as the characterization of its EPS genes. A typical EPS gene cluster was found in the TUA4408L genome consisting in five highly conserved genes epsA-E, and a variable region, which includes the genes for the polymerase wzy, the flippase wzx, and seven glycosyltransferases. In addition, we demonstrated here for the first time that L. delbrueckii TUA4408L and its EPS are able to improve the resistance of PIE cells against rotavirus infection by reducing viral replication and regulating inflammatory response. Moreover, studies in PIE cells demonstrated that the TUA4408L strain and its EPS differentially modulate the antiviral innate immune response triggered by the activation of Toll-like receptor 3 (TLR3). L. delbrueckii TUA4408L and its EPS are capable of increasing the activation of interferon regulatory factor (IRF)-3 and nuclear factor κB (NF-κB) signaling pathways leading to an improved expression of the antiviral factors interferon (IFN)-ß, Myxovirus resistance gene A (MxA) and RNaseL.


Asunto(s)
Antivirales/inmunología , Células Epiteliales , Mucosa Intestinal , Lactobacillus delbrueckii , Polisacáridos Bacterianos , Rotavirus/inmunología , Animales , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Células Epiteliales/virología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/virología , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/inmunología , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/inmunología , Porcinos
14.
Genome Announc ; 5(50)2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29242218

RESUMEN

The genome sequence of the immunomodulatory strain Lactobacillus rhamnosus strain IBL027 is described here. The reads were assembled into contigs with a total size 2,898,501 bp. The genome information will be useful for further specific genetic studies of this strain to evaluate its immunomodulatory and biotechnological properties as a vaccine adjuvant.

15.
Genome Announc ; 5(10)2017 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-28280008

RESUMEN

The genome of the immunomodulatory Lactobacillus plantarum MPL16, a strain able to ferment wakame (Undaria pinnatifida), is described here. The reads were assembled into contigs with a total size 3,278,495 bp. The genome information will be useful for further specific genetic studies of this strain that evaluate its immunomodulatory and biotechnological properties.

16.
Genome Announc ; 5(9)2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28254966

RESUMEN

The genome of the immunomodulatory strain Lactobacillus jensenii TL2937 is described here. The draft genome has a total length of 1,678,416 bp, a G+C content of 34.3%, and 1,470 predicted protein-coding sequences. The genome information will be useful for gaining insight into the immunomodulatory properties of the TL2937 strain in the porcine host.

17.
Genome Announc ; 4(6)2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27881548

RESUMEN

The genome sequence of Lactobacillus plantarum TL2766, a strain with the ability to ferment wakame (Undaria pinnatifida), is described here. The reads were assembled into contigs, with a total size of 3,310,195 bp. The genome information will be useful for further specific genetic studies of this strain and for its biotechnological applications.

18.
Genome Announc ; 4(2)2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26966208

RESUMEN

This report describes a draft genome sequence of Lactobacillus plantarum CRL1506, a probiotic strain with immunomodulatory properties isolated from goat milk. The reads generated by a whole-genome shotgun (WGS) strategy on an Illumina MiSeq sequencer were assembled into contigs with a total size of 3,228,096 bp. The draft genome sequence of L. plantarum CRL1506 will be useful for further studies of specific genetic features of this strain and for understanding the mechanisms of its immunobiotic properties.

19.
Genome Announc ; 3(3)2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26112792

RESUMEN

Lactobacillus delbrueckii subsp. bulgaricus CRL871 is the first strain of L. delbrueckii subsp. bulgaricus reported as a folate-producing strain. We report the draft genome sequence of L. delbrueckii subsp. bulgaricus CRL871 (2,063,981 bp, G+C content of 49.1%). This strain is of great biotechnological importance to the dairy industry because it constitutes an alternative to folic acid fortification.

20.
Genome Announc ; 1(4)2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23929489

RESUMEN

We report the genome sequence of Lactobacillus delbrueckii subsp. lactis CRL 581 (1,911,137 bp, GC 49.7%), a proteolytic strain isolated from a homemade Argentinian hard cheese which has a key role in bacterial nutrition and releases bioactive health-beneficial peptides from milk proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...