Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Zool B Mol Dev Evol ; 338(8): 561-574, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35286773

RESUMEN

There are different descriptions of allometric relationships between important components of the mammalian skull. Craniofacial evolutionary allometry describes a pattern of increasing facial cranium in larger skulls. Another body of literature describes disproportionately larger teeth in smaller species or specimens, matching anecdotal observations with dental problems in dwarf breeds whose teeth appear "too large for their skulls." We test the scaling of tooth row length with body size and skull length in a data set comprising 114 domestic horses (representing 40 breeds) and in another data set of 316 domestic cattle (of >60 breeds). We demonstrate that smaller skulls have a relatively longer tooth row in both horses and cattle; larger specimens have relatively shorter tooth rows. Whereas in horses, larger skulls have a relatively longer diastema, the distance of the mesial maxillary premolar to the premaxilla was proportional to cranium length in cattle. While the reasons for these patterns remain to be detected, they support the hypothesis that tooth size might be less "evolvable," in terms of time required for changes, than body size. The pattern may affect (i) the selective breeding for dwarf breeds by setting minimum constraints for skull size, as described previously for domestic horses with the same data set; (ii) the susceptibility of small breeds for dental problems; and (iii) differences in chewing efficiency between breeds of different sizes. The findings support the existing concept that scaling of tooth to body size across taxa becomes more isometric the longer these taxa are separated in evolutionary time.


Asunto(s)
Diente , Caballos , Animales , Bovinos , Cráneo , Cabeza , Evolución Biológica , Tamaño Corporal , Mamíferos
2.
Evol Lett ; 5(4): 385-396, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34367663

RESUMEN

The neural crest hypothesis posits that selection for tameness resulted in mild alterations to neural crest cells during embryonic development, which directly or indirectly caused the appearance of traits associated with the "domestication syndrome" (DS). Although representing an appealing unitary explanation for the generation of domestic phenotypes, support for this hypothesis from morphological data and for the validity of the DS remains a topic of debate. This study used the frameworks of morphological integration and modularity to assess patterns that concern the embryonic origin of the skull and issues around the neural crest hypothesis. Geometric morphometric landmarks were used to quantify cranial trait interactions between six pairs of wild and domestic mammals, comprising representatives that express between five and 17 of the traits included in the DS, and examples from each of the pathways by which animals entered into relationships with humans. We predicted the presence of neural crest vs mesoderm modular structure to the cranium, and that elements in the neural crest module would show lower magnitudes of integration and higher disparity in domestic forms compared to wild forms. Our findings support modular structuring based on tissue origin (neural crest, mesoderm) modules, along with low module integration magnitudes for neural crest cell derived cranial elements, suggesting differential capacity for evolutionary response among those elements. Covariation between the neural crest and mesoderm modules accounted for major components of shape variation for most domestic/wild pairs. Contra to our predictions, however, we find domesticates share similar integration magnitudes to their wild progenitors, indicating that higher disparity in domesticates is not associated with magnitude changes to integration among either neural crest or mesoderm derived elements. Differences in integration magnitude among neural crest and mesoderm elements across species suggest that developmental evolution preserves a framework that promotes flexibility under the selection regimes of domestication.

3.
PeerJ ; 7: e7678, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31576240

RESUMEN

BACKGROUND: Much of the shape variation found in animals is based on allometry and heterochrony. Horses represent an excellent model to investigate patterns of size-shape variation among breeds that were intentionally bred for extreme small and large sizes. METHODS: We tested whether ponies (wither height < 148 cm) have a diverging size-shape relationship in skull shape as compared to regular-sized horse breeds (wither height > 148 cm, here-after called horses) during ontogenetic growth. We used a dataset of 194 specimens from 25 horse and 13 pony breeds, two of which are miniature breeds (wither height < 96.5 cm)-Falabella, Shetland. We applied three-dimensional geometric morphometrics, linear measurements, and multivariate analyses (Procrustes ANOVAs) to quantitatively examine and compare the ontogenetic trajectories between pony and horse breeds with an emphasis on the miniature breeds as an extreme case of artificial selection on size. Additionally, we tested for juvenile characteristics in adult horse and miniature breeds that could resemble "paedomorphosis"-retention of juvenile characteristics in adult stage; e.g. large eyes, large braincase-to-face-relationship, and large head-to-body relationship. RESULTS: Allometric regression of size on shape revealed that 42% of shape variation could be explained by variation in size in all breeds. The ontogenetic trajectories of ponies and horses vary in slope and therefore in rate of change per unit size, and length. The differences in trajectory lengths and slopes result in ponies having a similar skull shape in an older age stage than horses of the same size in a younger age stage. This pattern could cause the generally perceived "paedomorphic" appearance of ponies. Miniature breeds have larger heads in relation to wither height compared to horses, a non-paedomorphic feature in horses specifically. Also, rostra (faces) are longer in adult individuals than in juveniles across all kinds of breeds. This pattern can be explained by the long-face hypothesis for grazing ungulates and could possibly be caused by the mismatch of selection by humans for shorter rostra and the dentition of ruminants. CONCLUSIONS: Miniature breed specimens do not exhibit any of the classical mammalian "paedomorphic" features (large orbits, large heads), except for the adult Falabella that has enlarged orbits, possibly because they are herbivorous ungulates that are affected by functional and metabolic constraints related to low nutrient-food consumption. Instead ponies, including miniature breeds, have faster and shorter ontogenetic growth compared to horses, resulting in adult pony skulls looking in part like juvenile horse skulls.

4.
Front Zool ; 15: 14, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29713365

RESUMEN

BACKGROUND: In horses, the morphological changes induced by the process of domestication are reportedly less pronounced than in other species, such as dogs or pigs - although the horses' disparity has rarely been empirically tested. We investigated shape differences and modularity of domesticated horses, Przewalski's horses, donkeys and zebras. Mandibular and tooth shape have been shown to be valuable features for differentiating wild and domesticated forms in some mammals. RESULTS: Both mandible and teeth, show a pattern of shape space occupation analogous to that of the cranium, with domesticated horses occupying a similar extension in shape space to that of wild equids. Only cranial shape data exhibit a tendency to separate domesticated horses and Przewalski's horses from donkeys and zebras. Maximum likelihood model-based tests confirm the horse cranium is composed of six developmental modules, as reported for placental mammals in general. The magnitude of integration in domesticated horse skull was lower than in wild equids across all six cranial modules, and lower values of integration were associated with higher disparity values across all modules. CONCLUSION: This is the first study that combines different skeletal features for the description and comparison of shape changes in all living equid groups using geometric morphometrics. We support Darwin's hypothesis that the shape variation in the skull of domesticated horses is similar to the shape variation of all wild equid species existing today. Lower magnitudes of module integration are recovered in domesticated horses compared to their wild relatives.

5.
R Soc Open Sci ; 4(10): 170876, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29134088

RESUMEN

As shown in a taxonomically broad study, domestication modifies postnatal growth. Skull shape across 1128 individuals was characterized by 14 linear measurements, comparing 13 pairs of wild versus domesticated forms. Among wild forms, the boar, the rabbit and the wolf have the highest proportion of allometric growth, explaining in part the great morphological diversity of the domesticated forms of these species. Wild forms exhibit more isometric growth than their domesticated counterparts. Multivariate comparisons show that dogs and llamas exhibit the greatest amount of differences in trajectories with their wild counterparts. The least amount is recorded in the pig-boar, and camel and horse pairs. Bivariate analyses reveal that most domesticated forms have growth trajectories different from their respective wild counterparts with regard to the slopes. In pigs and camels slopes are shared and intercepts are different. There is a trajectory extension in most domesticated herbivores and the contrary pattern in carnivorous forms. However, there is no single, universal and global pattern of paedomorphosis or any other kind of heterochrony behind the morphological diversification that accompanies domestication.

6.
J Invasive Cardiol ; 27(4): 218-21, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25840406

RESUMEN

BACKGROUND: Morphometric data on Caucasian radial and ulnar arteries are limited, with no data on flow interdependence in the forearm arterial circuit. METHODS: A total of 250 upper extremities in 125 patients were evaluated. Ultrasonography was performed and radial and ulnar artery lumen diameters were measured. Ulnar artery (UA) was compressed at the level of the wrist, and flow parameters in radial artery (RA) were recorded using duplex Doppler ultrasound. RESULTS: Radial and ulnar artery diameters were comparable at the level of the distal forearm (RA = 2.03 ± 0.28 mm, UA = 2.07 ± 0.27 mm; P=.14). There was no significant difference in radial or ulnar artery diameter between the dominant upper extremity and the non-dominant upper extremity. Upon compression of the ulnar artery, radial artery velocity-time integral (VTI) increased from 8.4 ± 3.8 cm to 12.8 ± 5.5 cm, which was statistically significant (P<.001). There was a significant inverse correlation between radial artery diameter and the magnitude of increase in radial VTI observed with UA compression (r² = 0.106; P<.001). CONCLUSION: RA diameter at the level of the distal forearm is comparable to UA. RA-VTI and likely flow significantly increase by compression of the UA. The smaller the radial artery, the larger the increase in radial artery flow with ulnar compression.


Asunto(s)
Antebrazo/irrigación sanguínea , Arteria Radial/anatomía & histología , Flujo Sanguíneo Regional/fisiología , Arteria Cubital/anatomía & histología , Adulto , Anciano , Anciano de 80 o más Años , Velocidad del Flujo Sanguíneo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Arteria Radial/diagnóstico por imagen , Arteria Radial/fisiología , Arteria Cubital/diagnóstico por imagen , Arteria Cubital/fisiología , Ultrasonografía Doppler Dúplex , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...