Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 13: 1188641, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228489

RESUMEN

Osteosarcomas are immune-resistant and metastatic as a result of elevated nonsense-mediated RNA decay (NMD), reactive oxygen species (ROS), and epithelial-to-mesenchymal transition (EMT). Although vitamin D has anti-cancer effects, its effectiveness and mechanism of action against osteosarcomas are poorly understood. In this study, we assessed the impact of vitamin D and its receptor (VDR) on NMD-ROS-EMT signaling in in vitro and in vivo osteosarcoma animal models. Initiation of VDR signaling facilitated the enrichment of EMT pathway genes, after which 1,25(OH)2D, the active vitamin D derivative, inhibited the EMT pathway in osteosarcoma subtypes. The ligand-bound VDR directly downregulated the EMT inducer SNAI2, differentiating highly metastatic from low metastatic subtypes and 1,25(OH)2D sensitivity. Moreover, epigenome-wide motif and putative target gene analysis revealed the VDR's integration with NMD tumorigenic and immunogenic pathways. In an autoregulatory manner, 1,25(OH)2D inhibited NMD machinery genes and upregulated NMD target genes implicated in anti-oncogenic activity, immunorecognition, and cell-to-cell adhesion. Dicer substrate siRNA knockdown of SNAI2 revealed superoxide dismutase 2 (SOD2)-mediated antioxidative responses and 1,25(OH)2D sensitization via non-canonical SOD2 nuclear-to-mitochondrial translocalization leading to overall ROS suppression. In a mouse xenograft metastasis model, the therapeutically relevant vitamin D derivative calcipotriol inhibited osteosarcoma metastasis and tumor growth shown for the first time. Our results uncover novel osteosarcoma-inhibiting mechanisms for vitamin D and calcipotriol that may be translated to human patients.

2.
bioRxiv ; 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36711643

RESUMEN

Osteosarcomas are immune-resistant and metastatic as a result of elevated nonsense-mediated RNA decay (NMD), reactive oxygen species (ROS), and epithelial-to-mesenchymal transition (EMT). Although vitamin D has anti-cancer effects, its effectiveness and mechanism of action against osteosarcomas are poorly understood. In this study, we assessed the impact of vitamin D and its receptor (VDR) on the NMD-ROS-EMT signaling axis in in vitro and in vivo osteosarcoma animal models. Initiation of VDR signaling facilitated the enrichment of EMT pathway genes, after which 1,25(OH) 2 D, the active vitamin D derivative, inhibited the EMT pathway in osteosarcoma subtypes. The ligand-bound VDR directly downregulated the EMT inducer SNAI2 , differentiating highly metastatic from low metastatic subtypes and 1,25(OH) 2 D sensitivity. Moreover, epigenome-wide motif and putative target gene analysis revealed the VDR’s integration with NMD tumorigenic and immunogenic pathways. In an autoregulatory manner, 1,25(OH) 2 D inhibited NMD machinery genes and upregulated NMD target genes implicated in anti-oncogenic activity, immunorecognition, and cell-to-cell adhesion. Dicer substrate siRNA knockdown of SNAI2 revealed superoxide dismutase 2 (SOD2)-mediated antioxidative responses and 1,25(OH) 2 D sensitization via non-canonical SOD2 nuclear-to-mitochondrial translocalization leading to overall ROS suppression. In a mouse xenograft metastasis model, the therapeutically relevant vitamin D derivative calcipotriol inhibited osteosarcoma metastasis and tumor growth shown for the first time. Our results uncover novel osteosarcoma-inhibiting mechanisms for vitamin D and calcipotriol that may be translated to human patients.

3.
J Phys Chem A ; 116(25): 6804-16, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22571336

RESUMEN

Raman spectra were recorded experimentally and calculated theoretically for bithiophene, terthiophene, and quaterthiophene samples as a function of excitation polarization. Distinct spectral signatures were assigned and correlated to the molecular/unit cell orientation as determined by X-ray diffraction. The ability to predict molecular/unit cell orientation within organic crystals using polarized Raman spectroscopy was evaluated by predicting the unit cell orientation in a simulated terthiophene crystal given a random set of simulated polarized Raman spectra. Polarized Raman spectroscopy offers a promising tool to quickly and economically determine the unit cell orientation in known organic crystals and crystalline thin films. Implications of our methodologies for studying individual molecule conformations are discussed.

4.
Langmuir ; 25(17): 9671-6, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19655706

RESUMEN

Binary polymer nanoparticles were synthesized by the reprecipitation of poly(4-vinylpyridine) in the presence of poly(diallyldimethylammonium chloride) and further used to make polymer-coated Ag nanoparticles. Polymer shells around Ag nanoparticles were formed by two methods: the reduction of Ag(2)O in the presence of the polymer nanoparticles and by mixing the polymer nanoparticles with already-made Ag nanoparticles. The resulting nanoparticles were coated with layers of the two polymers with the hydrophilic polymer on the outside providing their stability in water. The exposure of the polymer-coated Ag nanoparticles to unmodified Ag nanoparticles resulted in spontaneous self-assembly due to the electrostatic attraction. The polymer-coated nanoparticles and the nanoparticle assemblies were characterized by UV-vis, surface-enhanced Raman scattering spectroscopy, and transmission electron microscopy.

5.
J Am Chem Soc ; 128(39): 12618-9, 2006 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-17002334

RESUMEN

A method for monitoring DPA release from a single germinating Bacillus subtilis endospore is reported. High S/N ratio SERS spectra were obtained with excitation power 3 mW at 647.1 nm and 1 min spectral collection times. The method is proof-of-principle for the SERS detection limit at the single spore level. This represents a 100- to 1000-fold improvement over previously reported detection limits for SERS-based measurements of DPA in endospores.


Asunto(s)
Bacillus subtilis/fisiología , Ácidos Picolínicos/análisis , Espectrometría Raman/métodos , Bacillus subtilis/metabolismo , Microscopía/métodos , Esporas Bacterianas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA