RESUMEN
Contamination of water by microcystins is a global problem. These potent hepatotoxins demand constant monitoring and control methods in potable water. Promising approaches to reduce contamination risks have focused on natural microcystin biodegradation led by enzymes encoded by the mlrABCD genes. The first enzyme of this system (mlrA) linearizes microcystin structure, reducing toxicity and stability. Heterologous expression of mlrA in different microorganisms may enhance its production and activity, promote additional knowledge on the enzyme, and support feasible applications. In this context, we intended to express the mlrA gene from Sphingosinicella microcystinivorans B9 in an industrial Saccharomyces cerevisiae strain as an innovative biological alternative to degrade microcystins. The mlrA gene was codon-optimized for expression in yeast, and either expressed from a plasmid or through chromosomal integration at the URA3 locus. Recombinant and wild yeasts were cultivated in medium contaminated with microcystins, and the toxin content was analyzed during growth. Whereas no difference in microcystins content was observed in cultivation with the chromosomally integrated strain, the yeast strain hosting the mlrA expression plasmid reduced 83% of toxins within 120 h of cultivation. Our results show microcystinase A expressed by industrial yeast strains as a viable option for practical applications in water treatment.
RESUMEN
We investigated the fermentation of a mixture of oat and soybean hulls (1:1) subjected to acid (AH) or enzymatic (EH) hydrolyses, with both showing high osmotic pressures (> 1200 Osm kg-1) for the production of ethanol. Yeasts of genera Spathaspora, Scheffersomyces, Sugiymaella, and Candida, most of them biodiverse Brazilian isolates and previously untested in bioprocesses, were cultivated in these hydrolysates. Spathaspora passalidarum UFMG-CM-469 showed the best ethanol production kinetics in suspended cells cultures in acid hydrolysate, under microaerobic and anaerobic conditions. This strain was immobilized in LentiKats® (polyvinyl alcohol) and cultured in AH and EH. Supplementation of hydrolysates with crude yeast extract and peptone was also performed. The highest ethanol production was obtained using hydrolysates supplemented with crude yeast extract (AH-CYE and EH-CYE) showing yields of 0.40 and 0.44 g g-1, and productivities of 0.39 and 0.29 g (L h)-1, respectively. The reuse of the immobilized cells was tested in sequential fermentations of AH-CYE, EH-CYE, and a mixture of acid and enzymatic hydrolysates (AEH-CYE) operated under batch fluidized bed, with ethanol yields ranging from 0.31 to 0.40 g g-1 and productivities from 0.14 to 0.23 g (L h)-1. These results warrant further research using Spathaspora yeasts for second-generation ethanol production.
Asunto(s)
Células Inmovilizadas , Etanol , Glycine max/metabolismo , Saccharomycetales , Xilosa/metabolismo , Avena/metabolismo , Biocombustibles/microbiología , Reactores Biológicos/microbiología , Células Inmovilizadas/citología , Células Inmovilizadas/metabolismo , Etanol/análisis , Etanol/metabolismo , Fermentación , Lignina/metabolismo , Saccharomycetales/citología , Saccharomycetales/metabolismoRESUMEN
Coniochaeta species are versatile ascomycetes that have great capacity to deconstruct lignocellulose. Here, we explore the transcriptome of Coniochaeta sp. strain 2T2.1 from wheat straw-driven cultures with the fungus growing alone or as a member of a synthetic microbial consortium with Sphingobacterium multivorum w15 and Citrobacter freundii so4. The differential expression profiles of carbohydrate-active enzymes indicated an onset of (hemi)cellulose degradation by 2T2.1 during the initial 24 hours of incubation. Within the tripartite consortium, 63 transcripts of strain 2T2.1 were differentially expressed at this time point. The presence of the two bacteria significantly upregulated the expression of one galactose oxidase, one GH79-like enzyme, one multidrug transporter, one laccase-like protein (AA1 family) and two bilirubin oxidases, suggesting that inter-kingdom interactions (e.g. amensalism) take place within this microbial consortium. Overexpression of multicopper oxidases indicated that strain 2T2.1 may be involved in lignin depolymerization (a trait of enzymatic synergism), while S. multivorum and C. freundii have the metabolic potential to deconstruct arabinoxylan. Under the conditions applied, 2T2.1 appears to be a better degrader of wheat straw when the two bacteria are absent. This conclusion is supported by the observed suppression of its (hemi)cellulolytic arsenal and lower degradation percentages within the microbial consortium.
Asunto(s)
Ascomicetos/metabolismo , Lignina/metabolismo , Consorcios Microbianos , Ascomicetos/enzimología , Ascomicetos/genética , Citrobacter freundii/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Sphingobacterium/metabolismo , Triticum/metabolismoRESUMEN
An industrial ethanol-producing Saccharomyces cerevisiae strain with genes of fungal oxido-reductive pathway needed for xylose fermentation integrated into its genome (YRH1415) was used to obtain haploids and diploid isogenic strains. The isogenic strains were more effective in metabolizing xylose than YRH1415 strain and able to co-ferment glucose and xylose in the presence of high concentrations of inhibitors resulting from the hydrolysis of lignocellulosic biomass (switchgrass). The rate of xylose consumption did not appear to be affected by the ploidy of strains or the presence of two copies of the xylose fermentation genes but by heterozygosity of alleles for xylose metabolism in YRH1415. Furthermore, inhibitor tolerance was influenced by the heterozygous genome of the industrial strain, which also showed a marked influenced on tolerance to increasing concentrations of toxic compounds, such as furfural. In this work, selection of haploid derivatives was found to be a useful strategy to develop efficient xylose-fermenting industrial yeast strains.
Asunto(s)
Etanol/metabolismo , Regulación Fúngica de la Expresión Génica , Lignina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Xilosa/metabolismo , Biomasa , Clonación Molecular , Medios de Cultivo/química , Fermentación , Furaldehído/metabolismo , Antecedentes Genéticos , Glucosa/metabolismo , Hidrólisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Here, we report the draft genome sequence of the yeast Spathaspora xylofermentans UFMG-HMD23.3 (=CBS 12681), a d-xylose-fermenting yeast isolated from the Amazonian forest. The genome consists of 298 contigs, with a total size of 15.1 Mb, including the mitochondrial genome, and 5,948 predicted genes.