Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nutrients ; 15(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36678325

RESUMEN

Fecal microbiota transfer may serve as a therapeutic tool for treating obesity and related disorders but currently, there is no consensus regarding the optimal donor characteristics. We studied how microbiota from vegan donors, who exhibit a low incidence of non-communicable diseases, impact on metabolic effects of an obesogenic diet and the potential role of dietary inulin in mediating these effects. Ex-germ-free animals were colonized with human vegan microbiota and fed a standard or Western-type diet (WD) with or without inulin supplementation. Despite the colonization with vegan microbiota, WD induced excessive weight gain, impaired glucose metabolism, insulin resistance, and liver steatosis. However, supplementation with inulin reversed steatosis and improved glucose homeostasis. In contrast, inulin did not affect WD-induced metabolic changes in non-humanized conventional mice. In vegan microbiota-colonized mice, inulin supplementation resulted in a significant change in gut microbiota composition and its metabolic performance, inducing the shift from proteolytic towards saccharolytic fermentation (decrease of sulfur-containing compounds, increase of SCFA). We found that (i) vegan microbiota alone does not protect against adverse effects of WD; and (ii) supplementation with inulin reversed steatosis and normalized glucose metabolism. This phenomenon is associated with the shift in microbiota composition and accentuation of saccharolytic fermentation at the expense of proteolytic fermentation.


Asunto(s)
Hígado Graso , Microbioma Gastrointestinal , Ratones , Animales , Humanos , Trasplante de Microbiota Fecal , Veganos , Inulina/farmacología , Fibras de la Dieta/farmacología , Hígado Graso/prevención & control , Hígado Graso/tratamiento farmacológico , Dieta Occidental , Glucosa/farmacología
2.
Biomolecules ; 11(9)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34572516

RESUMEN

Butyrate is formed in the gut during bacterial fermentation of dietary fiber and is attributed numerous beneficial effects on the host metabolism. We aimed to develop a method for the assessment of functional capacity of gut microbiota butyrate synthesis based on the qPCR quantification of bacterial gene coding butyryl-CoA:acetate CoA-transferase, the key enzyme of butyrate synthesis. In silico, we identified bacteria possessing but gene among human gut microbiota by searching but coding sequences in available databases. We designed and validated six sets of degenerate primers covering all selected bacteria, based on their phylogenetic nearness and sequence similarity, and developed a method for gene abundance normalization in human fecal DNA. We determined but gene abundance in fecal DNA of subjects with opposing dietary patterns and metabolic phenotypes-lean vegans (VG) and healthy obese omnivores (OB) with known fecal microbiota and metabolome composition. We found higher but gene copy number in VG compared with OB, in line with higher fecal butyrate content in VG group. We further found a positive correlation between the relative abundance of target bacterial genera identified by next-generation sequencing and groups of but gene-containing bacteria determined by specific primers. In conclusion, this approach represents a simple and feasible tool for estimation of microbial functional capacity.


Asunto(s)
Butiratos/metabolismo , Heces/microbiología , Microbioma Gastrointestinal/genética , Genes Bacterianos , Reacción en Cadena de la Polimerasa , Adolescente , Adulto , ADN Bacteriano/genética , Dosificación de Gen , Humanos , Persona de Mediana Edad , Obesidad/microbiología , Fenotipo , Filogenia , Reproducibilidad de los Resultados , Estadísticas no Paramétricas , Veganos , Adulto Joven
3.
Front Nutr ; 8: 783302, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071294

RESUMEN

Background and Aim: Plant-based diets are associated with potential health benefits, but the contribution of gut microbiota remains to be clarified. We aimed to identify differences in key features of microbiome composition and function with relevance to metabolic health in individuals adhering to a vegan vs. omnivore diet. Methods: This cross-sectional study involved lean, healthy vegans (n = 62) and omnivore (n = 33) subjects. We assessed their glucose and lipid metabolism and employed an integrated multi-omics approach (16S rRNA sequencing, metabolomics profiling) to compare dietary intake, metabolic health, gut microbiome, and fecal, serum, and urine metabolomes. Results: The vegans had more favorable glucose and lipid homeostasis profiles than the omnivores. Long-term reported adherence to a vegan diet affected only 14.8% of all detected bacterial genera in fecal microbiome. However, significant differences in vegan and omnivore metabolomes were observed. In feces, 43.3% of all identified metabolites were significantly different between the vegans and omnivores, such as amino acid fermentation products p-cresol, scatole, indole, methional (lower in the vegans), and polysaccharide fermentation product short- and medium-chain fatty acids (SCFAs, MCFAs), and their derivatives (higher in the vegans). Vegan serum metabolome differed markedly from the omnivores (55.8% of all metabolites), especially in amino acid composition, such as low BCAAs, high SCFAs (formic-, acetic-, propionic-, butyric acids), and dimethylsulfone, the latter two being potential host microbiome co-metabolites. Using a machine-learning approach, we tested the discriminative power of each dataset. Best results were obtained for serum metabolome (accuracy rate 91.6%). Conclusion: While only small differences in the gut microbiota were found between the groups, their metabolic activity differed substantially. In particular, we observed a significantly different abundance of fermentation products associated with protein and carbohydrate intakes in the vegans. Vegans had significantly lower abundances of potentially harmful (such as p-cresol, lithocholic acid, BCAAs, aromatic compounds, etc.) and higher occurrence of potentially beneficial metabolites (SCFAs and their derivatives).

4.
Nutrients ; 12(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781598

RESUMEN

Omega-3 polyunsaturated fatty acids (ω-3PUFAs) are introduced into parenteral nutrition (PN) as hepatoprotective but may be susceptible to the lipid peroxidation while olive oil (OO) is declared more peroxidation resistant. We aimed to estimate how the lipid composition of PN mixture affects plasma and erythrocyte lipidome and the propensity of oxidative stress. A cross-sectional comparative study was performed in a cohort of adult patients who were long-term parenterally administered ω-3 PUFAs without (FO/-, n = 9) or with (FO/OO, n = 13) olive oil and healthy age- and sex-matched controls, (n = 30). Lipoperoxidation assessed as plasma and erythrocyte malondialdehyde content was increased in both FO/- and FO/OO groups but protein oxidative stress (protein carbonyls in plasma) and low redox status (GSH/GSSG in erythrocytes) was detected only in the FO/- subcohort. The lipidome of all subjects receiving ω-3 PUFAs was enriched with lipid species containing ω-3 PUFAs (FO/-˃FO/OO). Common characteristic of all PN-dependent patients was high content of fatty acyl-esters of hydroxy-fatty acids (FAHFAs) in plasma while acylcarnitines and ceramides were enriched in erythrocytes. Plasma and erythrocyte concentrations of plasmanyls and plasmalogens (endogenous antioxidants) were decreased in both patient groups with a significantly more pronounced effect in FO/-. We confirmed the protective effect of OO in PN mixtures containing ω-3 PUFAs.


Asunto(s)
Antioxidantes/metabolismo , Emulsiones Grasas Intravenosas/farmacología , Ácidos Grasos Omega-3/farmacología , Estrés Oxidativo/efectos de los fármacos , Nutrición Parenteral/métodos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Estudios Transversales , Eritrocitos/metabolismo , Femenino , Aceites de Pescado/farmacología , Humanos , Enfermedades Intestinales/sangre , Enfermedades Intestinales/terapia , Lipidómica , Lípidos/sangre , Masculino , Persona de Mediana Edad , Aceite de Oliva/farmacología , Nutrición Parenteral/efectos adversos
5.
JPEN J Parenter Enteral Nutr ; 44(1): 105-118, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31032975

RESUMEN

BACKGROUND: The gut microbiome and metabolome may significantly influence clinical outcomes in patients with short bowel syndrome (SBS). The study aimed to describe specific metagenomic/metabolomics profiles of different SBS types and to identify possible therapeutic targets. METHODS: Fecal microbiome (FM), volatile organic compounds (VOCs), and bile acid (BA) spectrum were analyzed in parenteral nutrition (PN)-dependent SBS I, SBS II, and PN-independent (non-PN) SBS patients. RESULTS: FM in SBS I, SBS II, and non-PN SBS shared characteristic features (depletion of beneficial anaerobes, high abundance of Lactobacilaceae and Enterobacteriaceae). SBS I patients were characterized by the abundance of oxygen-tolerant microrganisms and depletion of strict anaerobes. Non-PN SBS subjects showed markers of partial FM normalization. FM dysbiosis was translated into VOC and BA profiles characteristic for each SBS cohort. A typical signature of all SBS patients comprised high saturated aldehydes and medium-chain fatty acids and reduced short-chain fatty acid (SCFA) content. Particularly, SBS I and II exhibited low protein metabolism intermediate (indole, p-cresol) content despite the hypothetical presence of relevant metabolism pathways. Distinctive non-PN SBS marker was high phenol content. SBS patients' BA fecal spectrum was enriched by chenodeoxycholic and deoxycholic acids and depleted of lithocholic acid. CONCLUSIONS: Environmental conditions in SBS gut significantly affect FM composition and metabolic activity. The common feature of diverse SBS subjects is the altered VOC/BA profile and the lack of important products of microbial metabolism. Strategies oriented on the microbiome/metabolome reconstitution and targeted delivery of key compounds may represent a promising therapeutic strategy in SBS patients.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal , Metaboloma , Síndrome del Intestino Corto/microbiología , Ácidos y Sales Biliares/análisis , Disbiosis , Heces/microbiología , Humanos , Nutrición Parenteral , Compuestos Orgánicos Volátiles/análisis
6.
Sci Rep ; 9(1): 19097, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31836843

RESUMEN

Parenteral nutrition (PN) is often associated with the deterioration of liver functions (PNALD). Omega-3 polyunsaturated fatty acids (PUFA) were reported to alleviate PNALD but the underlying mechanisms have not been fully unraveled yet. Using omics´ approach, we determined serum and liver lipidome, liver proteome, and liver bile acid profile as well as markers of inflammation and oxidative stress in rats administered either ω-6 PUFA based lipid emulsion (Intralipid) or ω-6/ω-3 PUFA blend (Intralipid/Omegaven) via the enteral or parenteral route. In general, we found that enteral administration of both lipid emulsions has less impact on the liver than the parenteral route. Compared with parenterally administered Intralipid, PN administration of ω-3 PUFA was associated with 1. increased content of eicosapentaenoic (EPA)- and docosahexaenoic (DHA) acids-containing lipid species; 2. higher abundance of CYP4A isoenzymes capable of bioactive lipid synthesis and the increased content of their potential products (oxidized EPA and DHA); 3. downregulation of enzymes involved CYP450 drug metabolism what may represent an adaptive mechanism counteracting the potential negative effects (enhanced ROS production) of PUFA metabolism; 4. normalized anti-oxidative capacity and 5. physiological BAs spectrum. All these findings may contribute to the explanation of ω-3 PUFA protective effects in the context of PN.


Asunto(s)
Ácidos y Sales Biliares/análisis , Nutrición Enteral/métodos , Ácidos Grasos Omega-3/química , Hígado/metabolismo , Nutrición Parenteral/métodos , Proteoma/metabolismo , Animales , Ácidos Docosahexaenoicos/química , Ácido Eicosapentaenoico/química , Emulsiones , Ácidos Grasos Insaturados/metabolismo , Aceites de Pescado , Inflamación , Lipidómica , Lípidos/química , Masculino , Malondialdehído/metabolismo , Metabolómica , Estrés Oxidativo , Oxígeno/metabolismo , Fosfolípidos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Aceite de Soja
7.
PLoS One ; 14(11): e0224820, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31703079

RESUMEN

BACKGROUND & AIMS: MiR-33a has emerged as a critical regulator of lipid homeostasis in the liver. Genetic deficiency of miR-33a aggravates liver steatosis in a preclinical model of non-alcoholic fatty liver disease (NAFLD), and relative expression of miR-33a is increased in the livers of patients with non-alcoholic steatohepatitis (NASH). It was unknown whether miR-33a is detectable in the serum of patients with NAFLD. We sought to determine whether circulating miR-33a is associated with histological hepatic steatosis, inflammation, ballooning or fibrosis, and whether it could be used as a serum marker in patients with NAFLD/NASH. METHODS: We analysed circulating miR-33a using quantitative PCR in 116 liver transplant recipients who underwent post-transplant protocol liver biopsy. Regression analysis was used to determine association of serum miR-33a with hepatic steatosis, inflammation, ballooning and fibrosis in liver biopsy. RESULTS: Liver graft steatosis and inflammation, but not ballooning or fibrosis, were significantly associated with serum miR-33a, dyslipidemia and insulin resistance markers on univariate analysis. Multivariate analysis showed that steatosis was independently associated with serum miR-33a, ALT, glycaemia and waist circumference, whereas inflammation was independently associated with miR-33a, HbA1 and serum triglyceride levels. Receiver operating characteristic analysis showed that exclusion of serum miR-33a from multivariate analysis resulted in non-significant reduction of prediction model accuracy of liver steatosis or inflammation. CONCLUSIONS: Our data indicate that circulating miR-33a is an independent predictor of liver steatosis and inflammation in patients after liver transplantation. Although statistically significant, its contribution to the accuracy of prediction model employing readily available clinical and biochemical variables was limited in our cohort.


Asunto(s)
Trasplante de Hígado , MicroARNs/genética , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Adulto , Anciano , Biomarcadores , Biopsia , MicroARN Circulante , Femenino , Humanos , Trasplante de Hígado/efectos adversos , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/patología , Curva ROC
8.
Artículo en Inglés | MEDLINE | ID: mdl-31114547

RESUMEN

Background: Liver transplantation leads to non-alcoholic fatty liver disease or non-alcoholic steatohepatitis in up to 40% of graft recipients. The aim of our study was to assess transcriptomic profiles of liver grafts and to contrast the hepatic gene expression between the patients after transplantation with vs. without graft steatosis. Methods: Total RNA was isolated from liver graft biopsies of 91 recipients. Clinical characteristics were compared between steatotic (n = 48) and control (n = 43) samples. Their transcriptomic profiles were assessed using Affymetrix HuGene 2.1 ST Array Strips processed in Affymetrix GeneAtlas. Data were analyzed using Partek Genomics Suite 6.6 and Ingenuity Pathway Analysis. Results: The individuals with hepatic steatosis showed higher indices of obesity including weight, waist circumference or BMI but the two groups were comparable in measures of insulin sensitivity and cholesterol concentrations. We have identified 747 transcripts (326 upregulated and 421 downregulated in steatotic samples compared to controls) significantly differentially expressed between grafts with vs. those without steatosis. Among the most downregulated genes in steatotic samples were P4HA1, IGF1, or fetuin B while the most upregulated were PLIN1 and ME1. Most influential upstream regulators included HNF1A, RXRA, and FXR. The metabolic pathways dysregulated in steatotic liver grafts comprised blood coagulation, bile acid synthesis and transport, cell redox homeostasis, lipid and cholesterol metabolism, epithelial adherence junction signaling, amino acid metabolism, AMPK and glucagon signaling, transmethylation reactions, and inflammation-related pathways. The derived mechanistic network underlying major transcriptome differences between steatotic samples and controls featured PPARA and SERPINE1 as main nodes. Conclusions: While there is a certain overlap between the results of the current study and published transcriptomic profiles of non-transplanted livers with steatosis, we have identified discrete characteristics of the non-alcoholic fatty liver disease in liver grafts potentially utilizable for the establishment of predictive signature.

9.
Biomed Res Int ; 2019: 7084734, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941370

RESUMEN

Butyrate produced by the intestinal microbiota is essential for proper functioning of the intestinal immune system. Total dependence on parenteral nutrition (PN) is associated with numerous adverse effects, including severe microbial dysbiosis and loss of important butyrate producers. We hypothesised that a lack of butyrate produced by the gut microbiota may be compensated by its supplementation in PN mixtures. We tested whether i.v. butyrate administration would (a) positively modulate intestinal defence mechanisms and (b) counteract PN-induced dysbiosis. Male Wistar rats were randomised to chow, PN, and PN supplemented with 9 mM butyrate (PN+But) for 12 days. Antimicrobial peptides, mucins, tight junction proteins, and cytokine expression were assessed by RT-qPCR. T-cell subpopulations in mesenteric lymph nodes (MLN) were analysed by flow cytometry. Microbiota composition was assessed in caecum content. Butyrate supplementation resulted in increased expression of tight junction proteins (ZO-1, claudin-7, E-cadherin), antimicrobial peptides (Defa 8, Rd5, RegIIIγ), and lysozyme in the ileal mucosa. Butyrate partially alleviated PN-induced intestinal barrier impairment and normalised IL-4, IL-10, and IgA mRNA expression. PN administration was associated with an increase in Tregs in MLN, which was normalised by butyrate. Butyrate increased the total number of CD4+ and decreased a relative amount of CD8+ memory T cells in MLN. Lack of enteral nutrition and PN administration led to a shift in caecal microbiota composition. Butyrate did not reverse the altered expression of most taxa but did influence the abundance of some potentially beneficial/pathogenic genera, which might contribute to its overall beneficial effect.


Asunto(s)
Butiratos/farmacología , Suplementos Dietéticos , Microbioma Gastrointestinal , Intestinos/patología , Nutrición Parenteral , Animales , Biodiversidad , Colon/efectos de los fármacos , Colon/patología , Microbioma Gastrointestinal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Íleon/efectos de los fármacos , Íleon/patología , Intestino Delgado/efectos de los fármacos , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/metabolismo , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Masculino , Modelos Animales , Mucinas/biosíntesis , Células de Paneth/efectos de los fármacos , Células de Paneth/metabolismo , Péptidos/genética , Péptidos/metabolismo , Permeabilidad , Fenotipo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Proteínas de Uniones Estrechas/metabolismo
10.
Cancer Biol Ther ; 20(5): 633-641, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30638113

RESUMEN

Heterozygous germline BRCA2 mutations predispose to breast, ovarian, pancreatic and other types of cancer. The presence of a pathogenic mutation in patients or their family members warrants close surveillance or prophylactic surgery. Besides clearly pathogenic mutations, variants leading only to a single amino acid substitution are often identified. The influence of such variants on cancer risk is often unknown, making their presence a major clinical problem. When genetic methods are insufficient to classify these variants, functional assays with various cellular models are performed. We developed and applied a new syngeneic model of human cancer cells to test all variants of unknown significance in exon 18 identified by genetic testing of high-risk cancer patients in the Czech Republic, via introduction of constructs containing each of these variants into the wild-type allele of BRCA2-heterozygous DLD1 cells (BRCA2wt/Δex11). We found unaffected DNA repair function of BRCA2 in cell lines BRCA27997G>C/Δex11, BRCA28111C>T/Δex11, BRCA28149G>T/Δex11, BRCA28182G>A/Δex11, and BRCA28182G>T/Δex11, whereas the cell line BRCA28168A>G/Δex11 and the nonsense mutation carrying line BRCA28305G>T/Δex11 did affect protein function. Targeting the BRCA2 wild-type allele with a construct carrying the variant c.7988A> G resulted in incorporation exclusively into the already defective allele in all viable clones, strongly suggesting a detrimental phenotype. Our model thus offers a valuable tool for the functional evaluation of unclassified variants in the BRCA2 gene and provides a stable and distributable cellular resource for further research.


Asunto(s)
Proteína BRCA2/genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Modelos Biológicos , Neoplasias/genética , Adulto , Anciano , Línea Celular Tumoral , República Checa , Análisis Mutacional de ADN/métodos , Exones/genética , Estudios de Factibilidad , Femenino , Humanos , Masculino , Cadenas de Markov , Anamnesis , Persona de Mediana Edad , Mutación , Neoplasias/diagnóstico , Medición de Riesgo/métodos
11.
PLoS One ; 13(1): e0191353, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29342206

RESUMEN

Acetaminophen or paracetamol (APAP) overdose is a common cause of liver injury. Silymarin (SLM) is a hepatoprotective agent widely used for treating liver injury of different origin. In order to evaluate the possible beneficial effects of SLM, Balb/c mice were pretreated with SLM (100 mg/kg b.wt. per os) once daily for three days. Two hours after the last SLM dose, the mice were administered APAP (300 mg/kg b.wt. i.p.) and killed 6 (T6), 12 (T12) and 24 (T24) hours later. SLM-treated mice exhibited a significant reduction in APAP-induced liver injury, assessed according to AST and ALT release and histological examination. SLM treatment significantly reduced superoxide production, as indicated by lower GSSG content, lower HO-1 induction, alleviated nitrosative stress, decreased p-JNK activation and direct measurement of mitochondrial superoxide production in vitro. SLM did not affect the APAP-induced decrease in CYP2E1 activity and expression during the first 12 hrs. Neutrophil infiltration and enhanced expression of inflammatory markers were first detected at T12 in both groups. Inflammation progressed in the APAP group at T24 but became attenuated in SLM-treated animals. Histological examination suggests that necrosis the dominant cell death pathway in APAP intoxication, which is partially preventable by SLM pretreatment. We demonstrate that SLM significantly protects against APAP-induced liver damage through the scavenger activity of SLM and the reduction of superoxide and peroxynitrite content. Neutrophil-induced damage is probably secondary to necrosis development.


Asunto(s)
Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Silimarina/farmacología , Acetaminofén/farmacología , Animales , Sobredosis de Droga/patología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Necrosis/patología , Sustancias Protectoras/farmacología , Silimarina/metabolismo
12.
Gastroenterol Res Pract ; 2016: 7320275, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27403157

RESUMEN

Aims. The aim of our study was to determine the physiologic impact of NOTES and to compare the transgastric and transcolonic approaches. Methods. Thirty pigs were randomized to transgastric, transcolonic, or laparoscopic peritoneoscopy. Blood was drawn and analyzed for C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin- (IL-) 1ß, IL-6, WBCs, and platelets. Results. Endoscopic closure with an OTSC was successful in all 20 animals. The postoperative course was uneventful in all animals. CRP values rose on day 1 in all animals and slowly declined to baseline levels on day 14 with no differences between the groups (P > 0.05, NS). The levels of TNF-α were significantly increased in the transcolonic group (P < 0.01); however this difference was already present prior to the procedure and remained unchanged. No differences were observed in IL1-ß and IL-6 values. There was a temporary rise of WBC on day 1 and of platelets on day 7 in all groups (P > 0.05, NS). Conclusions. Transgastric, transcolonic, and laparoscopic peritoneoscopy resulted in similar changes in systemic inflammatory markers. Our findings do not support the assumption that NOTES is less invasive than laparoscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...