Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 83(14): 2398-2416.e12, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37402365

RESUMEN

Nuclear receptor-binding SET-domain protein 1 (NSD1), a methyltransferase that catalyzes H3K36me2, is essential for mammalian development and is frequently dysregulated in diseases, including Sotos syndrome. Despite the impacts of H3K36me2 on H3K27me3 and DNA methylation, the direct role of NSD1 in transcriptional regulation remains largely unknown. Here, we show that NSD1 and H3K36me2 are enriched at cis-regulatory elements, particularly enhancers. NSD1 enhancer association is conferred by a tandem quadruple PHD (qPHD)-PWWP module, which recognizes p300-catalyzed H3K18ac. By combining acute NSD1 depletion with time-resolved epigenomic and nascent transcriptomic analyses, we demonstrate that NSD1 promotes enhancer-dependent gene transcription by facilitating RNA polymerase II (RNA Pol II) pause release. Notably, NSD1 can act as a transcriptional coactivator independent of its catalytic activity. Moreover, NSD1 enables the activation of developmental transcriptional programs associated with Sotos syndrome pathophysiology and controls embryonic stem cell (ESC) multilineage differentiation. Collectively, we have identified NSD1 as an enhancer-acting transcriptional coactivator that contributes to cell fate transition and Sotos syndrome development.


Asunto(s)
Proteínas Nucleares , Síndrome de Sotos , Animales , Humanos , Proteínas Nucleares/metabolismo , Cromatina , Síndrome de Sotos/genética , Síndrome de Sotos/metabolismo , Histona Metiltransferasas/genética , Factores de Transcripción/genética , Diferenciación Celular/genética , Mamíferos/metabolismo , N-Metiltransferasa de Histona-Lisina/genética
2.
Mol Cell ; 76(3): 423-436.e3, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31521506

RESUMEN

The Polycomb repressive complex 2 (PRC2) catalyzes H3K27 methylation across the genome, which impacts transcriptional regulation and is critical for establishment of cell identity. Because of its essential function during development and in cancer, understanding the delineation of genome-wide H3K27 methylation patterns has been the focus of intense investigation. PRC2 methylation activity is abundant and dispersed throughout the genome, but the highest activity is specifically directed to a subset of target sites that are stably occupied by the complex and highly enriched for H3K27me3. Here, we show, by systematically knocking out single and multiple non-core subunits of the PRC2 complex in mouse embryonic stem cells, that they each contribute to directing PRC2 activity to target sites. Furthermore, combined knockout of six non-core subunits reveals that, while dispensable for global H3K27 methylation levels, the non-core PRC2 subunits are collectively required for focusing H3K27me3 activity to specific sites in the genome.


Asunto(s)
Metilación de ADN , Silenciador del Gen , Histonas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Línea Celular , Histonas/genética , Masculino , Metilación , Ratones , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/genética , Conformación Proteica , Subunidades de Proteína , Relación Estructura-Actividad
3.
Nat Struct Mol Biol ; 25(3): 225-232, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29483650

RESUMEN

Polycomb repressive complex 2 (PRC2) catalyzes methylation on lysine 27 of histone H3 (H3K27) and is required for maintaining transcriptional patterns and cellular identity, but the specification and maintenance of genomic PRC2 binding and H3K27 methylation patterns remain incompletely understood. Epigenetic mechanisms have been proposed, wherein pre-existing H3K27 methylation directs recruitment and regulates the catalytic activity of PRC2 to support its own maintenance. Here we investigate whether such mechanisms are required for specifying H3K27 methylation patterns in mouse embryonic stem cells (mESCs). Through re-expression of PRC2 subunits in PRC2-knockout cells that have lost all H3K27 methylation, we demonstrate that methylation patterns can be accurately established de novo. We find that regional methylation kinetics correlate with original methylation patterns even in their absence, and specification of the genomic PRC2 binding pattern is retained and specifically dependent on the PRC2 core subunit SUZ12. Thus, the H3K27 methylation patterns in mESCs are not dependent on self-autonomous epigenetic inheritance.


Asunto(s)
Histonas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Células Cultivadas , Islas de CpG , Células Madre Embrionarias/metabolismo , Cinética , Metilación , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...