Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 43(4): 723-735, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38411309

RESUMEN

Hyalella azteca is an epibenthic crustacean used in ecotoxicology, but there are challenges associated with standard methods using reproduction as an endpoint. A novel, 28-day reproduction toxicity test method for H. azteca was created to address these issues by initiating tests with sexually mature amphipods to eliminate the confounding effects of growth, using a sex ratio of seven females to three males to reduce reproductive variability, and conducting tests in water-only conditions to make recovery of juveniles easier and expand testing capabilities to water-soluble compounds. In the present study, we evaluated the 28-day novel method by comparing it with the 42-day standard test method in duplicate and parallel water-only, static-renewal exposures to sublethal concentrations of imidacloprid (0.5-8 µg/L). Both methods showed similar effects on survival, with survival approaching 50% in the highest test concentration (8 µg/L). However, the 42-day median effect concentrations (EC50s) for growth were more sensitive in the standard method (1.5-3.2 µg/L) compared with the 28-day EC50s generated by the novel method (>8 µg/L). Reproduction endpoints (juveniles/female) produced similar EC50s between methods, but the data were less variable in novel tests (smaller coefficients of variation); therefore, fewer replicates would be required to detect effects on reproduction compared with the standard method. In addition, novel tests generated 28 days of reproduction data compared with 14 days using standard tests and allowed survival and growth of sexes to be assessed independently. Thus, the novel method shows promise to improve the use of reproduction as an endpoint in water-only toxicity tests with H. azteca. Environ Toxicol Chem 2024;43:723-735. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Anfípodos , Hormigas , Neonicotinoides , Nitrocompuestos , Contaminantes Químicos del Agua , Animales , Femenino , Contaminantes Químicos del Agua/análisis , Pruebas de Toxicidad/métodos , Reproducción , Agua
2.
Ecotoxicol Environ Saf ; 207: 111250, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32920311

RESUMEN

Perfluoroalkyl substances (PFAS), including perfluorooctanoic acid (PFOA), are industrial chemicals that are of concern due to their environmental presence, persistence, bioaccumulative potential, toxicity, and capacity for long-range transport. Despite a large body of research on environmental exposure, insufficient chronic aquatic toxicity data exist to develop water quality targets for clean-up of federal contaminated sites in Canada. Thus, our objective was to assess the aqueous toxicity of PFOA in chronic tests with Hyalella azteca (amphipod) and early-life stage tests with Pimephales promelas (fathead minnow). Toxicity data were analyzed based on measured PFOA concentrations. Amphipod exposures were 42 d (0.84-97 mg/L) and examined survival, growth, and reproduction. Fathead minnow exposures were 21 d (0.010-76 mg/L), which encompassed hatching (5 d) and larval stages until 16 d post-hatch; endpoints included hatching success, deformities at hatch, and larval survival and growth. Amphipod survival was significantly reduced at 97 mg/L (42-d LC50 = 51 mg/L), but growth and reproduction were more sensitive endpoints (42-d EC50 for both endpoints = 2.3 mg/L). Fathead minnows were less sensitive than amphipods, exhibiting no significant effects in all endpoints with the exception of uninflated swim bladder, which was significantly higher at 76 mg/L (15%) than controls (0%). Maximum concentrations of PFOA are generally in the ng/L range in global surface waters, but can reach the µg/L range in close proximity to major source inputs; therefore, environmental concentrations are well below those that caused toxicity in the current study. Our data will provide valuable information with which to assess the risk of PFOA at contaminated sites, and to set a target for site remediation.


Asunto(s)
Anfípodos , Caprilatos/análisis , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Canadá , Cyprinidae/crecimiento & desarrollo , Larva/efectos de los fármacos , Reproducción/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Calidad del Agua
4.
Environ Toxicol Chem ; 39(11): 2221-2227, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32761933

RESUMEN

Effects-directed analysis (EDA) is used to identify the principal toxic components within a complex mixture using iterative steps of chemical fractionation guided by bioassay results. Bioassay selection can be limited in EDA because of the volume requirements for many standardized test methods, and therefore, a reduced-volume acute toxicity test that also provides whole-organism responses is beneficial. To address this need, a static, 7-d, water-only, reduced-volume method (50 mL, 10 organisms) was developed for Hyalella azteca that substantially decreases the volume requirements of standard-volume acute test exposures (200-500 mL of test solution, 15-20 organisms) while maintaining water quality and meeting control survival criteria. Standard- and reduced-volume methods were compared by conducting concurrent toxicity tests with 2 inorganic toxicants (KCl and CdCl2 ) and 2 organic mixtures of naphthenic acid fraction components (NAFCs) to evaluate test performance. There was no difference between methods when comparing the median lethal concentrations (LC50s) for KCl and both NAFC mixtures (p > 0.05). The LC50s for CdCl2 were statistically different (p = 0.0002); however, this was not considered biologically meaningful because the difference between LC50s was <2-fold. In conclusion, the reduced-volume H. azteca test method generated results comparable to standard-volume test methods and is suitable for use in situations where limited testing material is available, such as when conducting EDA. Environ Toxicol Chem 2020;39:2221-2227. © Her Majesty the Queen in Right of Canada 2020. Reproduced with the permission of the Minister of Environment and Climate Change Canada.


Asunto(s)
Anfípodos/efectos de los fármacos , Pruebas de Toxicidad Aguda/métodos , Contaminantes Químicos del Agua/toxicidad , Anfípodos/fisiología , Animales , Cloruro de Cadmio/toxicidad , Ácidos Carboxílicos/química , Ácidos Carboxílicos/toxicidad , Femenino , Agua Dulce/análisis , Dosificación Letal Mediana , Cloruro de Potasio/toxicidad , Calidad del Agua
5.
Environ Sci Pollut Res Int ; 27(33): 41803-41815, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32696412

RESUMEN

The toxicity of endocrinologically active pharmaceuticals finasteride (FIN) and melengestrol acetate (MGA) was assessed in freshwater mussels, including acute (48 h) aqueous tests with glochidia from Lampsilis siliquoidea, sub-chronic (14 days) sediment tests with gravid female Lampsilis fasciola, and chronic (28 days) sediment tests with juvenile L. siliquoidea, and in chronic (42 days) sediment tests with the amphipod Hyalella azteca and the mayfly Hexagenia spp. Finasteride was not toxic in acute aqueous tests with L. siliquoidea glochidia (up to 23 mg/L), whereas significant toxicity to survival and burial ability was detected in chronic sediment tests with juvenile L. siliquoidea (chronic value (ChV, the geometric mean of LOEC and NOEC) = 58 mg/kg (1 mg/L)). Amphipods (survival, growth, reproduction, and sex ratio) and mayflies (growth) were similarly sensitive (ChV = 58 mg/kg (1 mg/L)). Melengestrol acetate was acutely toxic to L. siliquoidea glochidia at 4 mg/L in aqueous tests; in sediment tests, mayflies were the most sensitive species, with significant growth effects observed at 37 mg/kg (0.25 mg/L) (ChV = 21 mg/kg (0.1 mg/L)). Exposure to sublethal concentrations of FIN and MGA had no effect on the (luring and filtering) behaviour of gravid L. fasciola, or the viability of their brooding glochidia. Based on the limited number of measured environmental concentrations of both chemicals, and their projected concentrations, no direct effects are expected by these compounds individually on the invertebrates tested. However, organisms are exposed to contaminant mixtures in the aquatic environment, and thus, the effects of FIN and MGA as components of these mixtures require further investigation.


Asunto(s)
Bivalvos , Ephemeroptera , Acetato de Melengestrol , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Animales , Femenino , Finasterida/toxicidad , Invertebrados , Contaminantes Químicos del Agua/toxicidad
6.
Ecotoxicol Environ Saf ; 175: 215-223, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-30901639

RESUMEN

Neonicotinoids are the most widely used insecticides in the world. They are preferentially toxic to insects while displaying a low toxicity toward vertebrates, and this selective toxicity has resulted in the rapid and ubiquitous use of these compounds. However, neonicotinoids have been detected in agricultural surface waters and are known to cause adverse effects in non-target aquatic organisms. A wide range of toxicity has been reported for aquatic crustaceans, but most of the studies focus on the acute effects of imidacloprid, and few data are available regarding chronic effects of other neonicotinoids or neonicotinoid replacements (e.g., butenolides). The objective of this study was to assess the acute and chronic toxicity of six neonicotinoids (imidacloprid, thiamethoxam, acetamiprid, clothianidin, thiacloprid, and dinotefuran) and one butenolide (flupyradifurone) to the freshwater amphipod Hyalella azteca. Chronic (28-d), water-only, static-renewal tests were conducted. Survival was assessed weekly, and growth was measured at the end of the exposure. Effects of neonicotinoids varied depending on the compound. Acute (7-d) LC50s were 4.0, 4.7, 60, 68, 230, and 290 µg/L for clothianidin, acetamiprid, dinotefuran, thiacloprid, imidacloprid, and thiamethoxam, respectively. Chronic (28-d) survival and growth were reduced at similar concentrations to acute (7-d) survival for thiamethoxam, acetamiprid, clothianidin, and dinotefuran. However, chronic survival and growth of amphipods exposed to imidacloprid and thiacloprid were reduced at lower concentrations than acute survival, with respective 28-d LC50s of 90 and 44 µg/L, and EC50s of 4 and 3 µg/L. Flupyradifurone was intermediate in toxicity compared to the neonicotinoids: 7-d LC50, 28-d LC50, and 28-d EC50 were 26, 20, and 16 µg/L, respectively. The concentrations of imidacloprid and clothianidin reported for North American surface waters fall within the effect ranges observed in this study, indicating the potential for these compounds to cause adverse effects to indigenous populations of H. azteca.


Asunto(s)
4-Butirolactona/análogos & derivados , Anfípodos/efectos de los fármacos , Agua Dulce/química , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Contaminantes Químicos del Agua/toxicidad , 4-Butirolactona/toxicidad , Animales , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica
7.
Environ Pollut ; 238: 63-75, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29544197

RESUMEN

Neonicotinoid insecticides are environmentally persistent and highly water-soluble, and thus are prone to leaching into surface waters where they may negatively affect non-target aquatic insects. Most of the research to date has focused on imidacloprid, and few data are available regarding the effects of other neonicotinoids or their proposed replacements (butenolide insecticides). The objective of this study was to assess the toxicity of six neonicotinoids (imidacloprid, thiamethoxam, acetamiprid, clothianidin, thiacloprid, and dinotefuran) and one butenolide (flupyradifurone) to Hexagenia spp. (mayfly larvae). Acute (96-h), water-only tests were conducted, and survival and behaviour (number of surviving mayflies inhabiting artificial burrows) were assessed. Acute sublethal tests were also conducted with imidacloprid, acetamiprid, and thiacloprid, and in addition to survival and behaviour, mobility (ability to burrow into sediment) and recovery (survival and growth following 21 d in clean sediment) were measured. Sublethal effects occurred at much lower concentrations than survival: 96-h LC50s ranged from 780 µg/L (acetamiprid) to >10,000 µg/L (dinotefuran), whereas 96-h EC50s ranged from 4.0 µg/L (acetamiprid) to 630 µg/L (thiamethoxam). Flupyradifurone was intermediate in toxicity, with a 96-h LC50 of 2000 µg/L and a 96-h EC50 of 81 µg/L. Behaviour and mobility were impaired significantly and to a similar degree in sublethal exposures to 10 µg/L imidacloprid, acetamiprid, and thiacloprid, and survival and growth following the recovery period were significantly lower in mayflies exposed to 10 µg/L acetamiprid and thiacloprid, respectively. A suite of effects on mayfly swimming behaviour/ability and respiration were also observed, but not quantified, following exposures to imidacloprid, acetamiprid, and thiacloprid at 1 µg/L and higher. Imidacloprid concentrations measured in North American surface waters have been found to meet or exceed those causing toxicity to Hexagenia, indicating that environmental concentrations may adversely affect Hexagenia and similarly sensitive non-target aquatic species.


Asunto(s)
4-Butirolactona/análogos & derivados , Ephemeroptera/efectos de los fármacos , Insecticidas/toxicidad , Larva/efectos de los fármacos , Neonicotinoides/toxicidad , 4-Butirolactona/toxicidad , Animales , Guanidinas/toxicidad , Imidazoles/toxicidad , Nitrocompuestos/toxicidad , Oxazinas/toxicidad , Piridinas/toxicidad , Tiametoxam , Tiazinas/toxicidad , Tiazoles/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...