Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Exp Psychol Hum Percept Perform ; 49(11): 1485-1502, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37870825

RESUMEN

The spatial-size association of response codes (SSARC) effect refers to the finding of better performance with the left hand to small stimuli and with the right hand to large stimuli, as compared to the reverse mapping. In the present study, we investigated which response coding is responsible for the emergence of the SSARC effect. We observed a SSARC effect only with response selection between hands but not between fingers of one hand, indicating that the responses are coded relative to the body midline. Furthermore, we observed a SSARC effect with parallel arms but not with crossed arms, suggesting that both the anatomical side of the effector and its external spatial position contribute to the response code. However, using a reaching task as compared to keypresses, the SSARC effect followed the arms, suggesting that the crucial spatial response code refers more strongly to the anatomical side of the effector rather than to the external spatial response position. These findings document a strong influence of anatomically- or body-based coding on the SSARC effect, are at odds with the proposition of a generalized magnitude system that utilizes a common, external spatial metric, and point toward a categorical nature of response codes underlying the SSARC effect. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Asunto(s)
Dedos , Mano , Humanos , Mano/fisiología , Tiempo de Reacción , Desempeño Psicomotor , Percepción Espacial
3.
Nat Commun ; 14(1): 4532, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500625

RESUMEN

Movements towards touch on the body require integrating tactile location and body posture information. Tactile processing and movement planning both rely on posterior parietal cortex (PPC) but their interplay is not understood. Here, human participants received tactile stimuli on their crossed and uncrossed feet, dissociating stimulus location relative to anatomy versus external space. Participants pointed to the touch or the equivalent location on the other foot, which dissociates sensory and motor locations. Multi-voxel pattern analysis of concurrently recorded fMRI signals revealed that tactile location was coded anatomically in anterior PPC but spatially in posterior PPC during sensory processing. After movement instructions were specified, PPC exclusively represented the movement goal in space, in regions associated with visuo-motor planning and with regional overlap for sensory, rule-related, and movement coding. Thus, PPC flexibly updates its spatial codes to accommodate rule-based transformation of sensory input to generate movement to environment and own body alike.


Asunto(s)
Movimiento , Percepción del Tacto , Humanos , Postura , Lóbulo Parietal/diagnóstico por imagen , Corteza Somatosensorial , Sensación , Percepción Espacial
4.
J Neurosci ; 43(23): 4341-4351, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37160362

RESUMEN

Many movements in daily life are embedded in motion sequences that involve more than one limb, demanding the motor system to monitor and control different body parts in quick succession. During such movements, systematic changes in the environment or the body might require motor adaptation of specific segments. However, previous motor adaptation research has focused primarily on motion sequences produced by a single limb, or on simultaneous movements of several limbs. For example, adaptation to opposing force fields is possible in unimanual reaching tasks when the direction of a prior or subsequent movement is predictive of force field direction. It is unclear, however, whether multilimb sequences can support motor adaptation processes in a similar way. In the present study (38 females, 38 males), we investigated whether reaches can be adapted to different force fields in a bimanual motor sequence when the information about the perturbation is associated with the prior movement direction of the other arm. In addition, we examined whether prior perceptual (visual or proprioceptive) feedback of the opposite arm contributes to force field-specific motor adaptation. Our key finding is that only active participation in the bimanual sequential task supports pronounced adaptation. This result suggests that active segments in bimanual motion sequences are linked across limbs. If there is a consistent association between movement kinematics of the linked and goal movement, the learning process of the goal movement can be facilitated. More generally, if motion sequences are repeated often, prior segments can evoke specific adjustments of subsequent movements.SIGNIFICANCE STATEMENT Movements in a limb's motion sequence can be adjusted based on linked movements. A prerequisite is that kinematics of the linked movements correctly predict which adjustments are needed. We show that use of kinematic information to improve performance is even possible when a prior linked movement is performed with a different limb. For example, a skilled juggler might have learned how to correctly adjust his catching movement of the left hand when the right hand performed a throwing action in a specific way. Linkage is possibly a key mechanism of the human motor system for learning complex bimanual skills. Our study emphasizes that learning of specific movements should not be studied in isolation but within their motor sequence context.


Asunto(s)
Mano , Aprendizaje , Masculino , Femenino , Humanos , Aprendizaje/fisiología , Mano/fisiología , Adaptación Fisiológica/fisiología , Movimiento/fisiología , Movimiento (Física) , Desempeño Psicomotor/fisiología , Destreza Motora/fisiología
5.
Proc Natl Acad Sci U S A ; 120(15): e2209680120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37014855

RESUMEN

Our skin is a two-dimensional sheet that can be folded into a multitude of configurations due to the mobility of our body parts. Parts of the human tactile system might account for this flexibility by being tuned to locations in the world rather than on the skin. Using adaptation, we scrutinized the spatial selectivity of two tactile perceptual mechanisms for which the visual equivalents have been reported to be selective in world coordinates: tactile motion and the duration of tactile events. Participants' hand position-uncrossed or crossed-as well as the stimulated hand varied independently across adaptation and test phases. This design distinguished among somatotopic selectivity for locations on the skin and spatiotopic selectivity for locations in the environment, but also tested spatial selectivity that fits neither of these classical reference frames and is based on the default position of the hands. For both features, adaptation consistently affected subsequent tactile perception at the adapted hand, reflecting skin-bound spatial selectivity. Yet, tactile motion and temporal adaptation also transferred across hands but only if the hands were crossed during the adaptation phase, that is, when one hand was placed at the other hand's typical location. Thus, selectivity for locations in the world was based on default rather than online sensory information about the location of the hands. These results challenge the prevalent dichotomy of somatotopic and spatiotopic selectivity and suggest that prior information about the hands' default position -right hand at the right side-is embedded deep in the tactile sensory system.


Asunto(s)
Percepción Espacial , Percepción del Tacto , Humanos , Mano , Tacto , Postura
6.
Child Dev ; 94(3): e154-e165, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36651681

RESUMEN

This longitudinal study investigated the effect of experience with tactile stimulation on infants' ability to reach to targets on the body, an important adaptive skill. Infants were provided weekly tactile stimulation on eight body locations from 4 to 8 months of age (N = 11), comparing their ability to reach to the body to infants in a control group who did not receive stimulation (N = 10). Infants who received stimulation were more likely to successfully reach targets on the body than controls by 7 months of age. These findings indicate that tactile stimulation facilitates the development of reaching to the body by allowing infants to explore the sensorimotor correlations emerging from the stimulation.


Asunto(s)
Desarrollo Infantil , Percepción del Tacto , Humanos , Lactante , Estudios Longitudinales , Desarrollo Infantil/fisiología , Tacto/fisiología , Percepción del Tacto/fisiología , Movimiento/fisiología
7.
eNeuro ; 9(6)2022.
Artículo en Inglés | MEDLINE | ID: mdl-36302633

RESUMEN

Visuospatial attention is a prerequisite for the performance of visually guided movements: perceptual discrimination is regularly enhanced at target locations before movement initiation. It is known that this attentional prioritization evolves over the time of movement preparation; however, it is not clear whether this build-up simply reflects a time requirement of attention formation or whether, instead, attention build-up reflects the emergence of the movement decision. To address this question, we combined behavioral experiments, psychophysics, and computational decision-making models to characterize the time course of attention build-up during motor preparation. Participants (n = 46, 29 female) executed center-out reaches to one of two potential target locations and reported the identity of a visual discrimination target (DT) that occurred concurrently at one of various time-points during movement preparation and execution. Visual discrimination increased simultaneously at the two potential target locations but was modulated by the experiment-wide probability that a given location would become the final goal. Attention increased further for the location that was then designated as the final goal location, with a time course closely related to movement initiation. A sequential sampling model of decision-making faithfully predicted key temporal characteristics of attentional allocation. Together, these findings provide evidence that visuospatial attentional prioritization during motor preparation does not simply reflect that a spatial location has been selected as movement goal, but rather indexes the time-extended, cumulative decision that leads to the selection, hence constituting a link between perceptual and motor aspects of sensorimotor decisions.


Asunto(s)
Atención , Percepción Visual , Femenino , Humanos , Discriminación en Psicología , Movimiento , Psicofísica , Desempeño Psicomotor , Tiempo de Reacción
8.
Cortex ; 149: 202-225, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35272063

RESUMEN

Humans often misjudge where on the body a touch occurred. Theoretical accounts have ascribed such misperceptions to local interactions in peripheral and primary somatosensory neurons, positing that spatial-perceptual mechanisms adhere to limb boundaries and skin layout. Yet, perception often reflects integration of sensory signals with prior experience. On their trajectories, objects often touch multiple limbs; therefore, body-environment interactions should manifest in perceptual mechanisms that reflect external space. Here, we demonstrate that humans perceived the cutaneous rabbit illusion - the percept of multiple identical stimuli as hopping across the skin - along the Euclidian trajectory between stimuli on two body parts and regularly mislocalized stimuli from one limb to the other. A Bayesian model based on Euclidian, as opposed to anatomical, distance faithfully reproduced key aspects of participants' localization behavior. Our results suggest that prior experience of touch in space critically shapes tactile spatial perception and illusions beyond anatomical organization.


Asunto(s)
Ilusiones , Percepción del Tacto , Teorema de Bayes , Humanos , Ilusiones/fisiología , Pierna , Percepción Espacial/fisiología , Tacto/fisiología , Percepción del Tacto/fisiología
10.
Prog Neurobiol ; 209: 102185, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34775040

RESUMEN

The macaque ventral intraparietal area (VIP) in the fundus of the intraparietal sulcus has been implicated in a diverse range of sensorimotor and cognitive functions such as motion processing, multisensory integration, processing of head peripersonal space, defensive behavior, and numerosity coding. Here, we exhaustively review macaque VIP function, cytoarchitectonics, and anatomical connectivity and integrate it with human studies that have attempted to identify a potential human VIP homologue. We show that human VIP research has consistently identified three, rather than one, bilateral parietal areas that each appear to subsume some, but not all, of the macaque area's functionality. Available evidence suggests that this human "VIP complex" has evolved as an expansion of the macaque area, but that some precursory specialization within macaque VIP has been previously overlooked. The three human areas are dominated, roughly, by coding the head or self in the environment, visual heading direction, and the peripersonal environment around the head, respectively. A unifying functional principle may be best described as prediction in space and time, linking VIP to state estimation as a key parietal sensorimotor function. VIP's expansive differentiation of head and self-related processing may have been key in the emergence of human bodily self-consciousness.


Asunto(s)
Macaca , Lóbulo Parietal , Animales , Humanos
11.
J Neurophysiol ; 126(6): 2001-2013, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34788180

RESUMEN

Action choices are influenced by future and recent past action states. For example, when performing two actions in succession, response times (RTs) to initiate the second action are reduced when the same hand is used. These findings suggest the existence of effector-specific processing for action planning. However, given that each hand is primarily controlled by the contralateral hemisphere, the RT benefit might actually reflect effector-independent, hemisphere-specific rather than effector-specific repetition effects. Here, participants performed two consecutive movements, each with a hand or a foot, in one of two directions. Direction was specified in an egocentric reference frame (inward, outward) or in an allocentric reference frame (left, right). Successive actions were initiated faster when the same limb (e.g., left hand-left hand), but not the other limb of the same body side (e.g., left foot-left hand), executed the second action. The same-limb advantage was evident even when the two movements involved different directions, whether specified egocentrically or allocentrically. Corroborating evidence from computational modeling lends support to the claim that repetition effects in action planning reflect persistent changes in baseline activity within neural populations that encode effector-specific action plans.NEW & NOTEWORTHY Repeated hand use facilitates the initiation of successive actions (repetition effect). This finding has been interpreted as evidence for effector-specific action plans. However, given that each hand is primarily controlled by the contralateral hemisphere, any differences might reflect effector-independent, hemisphere-specific rather than effector-specific processing. We dissociated these alternatives by asking participants to perform successive actions with hands and feet and provide novel evidence that repetition effects in limb use truly reflect effector-specific coding.


Asunto(s)
Pie/fisiología , Lateralidad Funcional/fisiología , Mano/fisiología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
12.
J Neurosci ; 40(47): 9088-9102, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33087476

RESUMEN

Oscillatory α-band activity is commonly associated with spatial attention and multisensory prioritization. It has also been suggested to reflect the automatic transformation of tactile stimuli from a skin-based, somatotopic reference frame into an external one. Previous research has not convincingly separated these two possible roles of α-band activity. Previous experimental paradigms have used artificially long delays between tactile stimuli and behavioral responses to aid relating oscillatory activity to these different events. However, this strategy potentially blurs the temporal relationship of α-band activity relative to behavioral indicators of tactile-spatial transformations. Here, we assessed α-band modulation with massive univariate deconvolution, an analysis approach that disentangles brain signals overlapping in time and space. Thirty-one male and female human participants performed a delay-free, visual search task in which saccade behavior was unrestricted. A tactile cue to uncrossed or crossed hands was either informative or uninformative about visual target location. α-Band suppression following tactile stimulation was lateralized relative to the stimulated hand over central-parietal electrodes but relative to its external location over parieto-occipital electrodes. α-Band suppression reflected external touch location only after informative cues, suggesting that posterior α-band lateralization does not index automatic tactile transformation. Moreover, α-band suppression occurred at the time of, or after, the production of the saccades guided by tactile stimulation. These findings challenge the idea that α-band activity is directly involved in tactile-spatial transformation and suggest instead that it reflects delayed, supramodal processes related to attentional reorienting.SIGNIFICANCE STATEMENT Localizing a touch in space requires integrating somatosensory information about skin location and proprioceptive or visual information about posture. The automatic remapping between skin-based tactile information to a location in external space has been proposed to rely on the modulation of oscillatory brain activity in the α-band range, across the multiple cortical areas that are involved in tactile, multisensory, and spatial processing. We report two findings that are inconsistent with this view. First, α-band activity reflected the remapped stimulus location only when touch was task relevant. Second, α-band modulation occurred too late to account for spatially directed behavioral responses and, thus, only after remapping must have taken place. These characteristics contradict the idea that α-band directly reflects automatic tactile remapping processes.


Asunto(s)
Ritmo alfa/fisiología , Orientación Espacial/fisiología , Percepción Espacial/fisiología , Percepción del Tacto/fisiología , Adolescente , Adulto , Señales (Psicología) , Electrodos , Movimientos Oculares/fisiología , Femenino , Mano/inervación , Mano/fisiología , Humanos , Masculino , Lóbulo Occipital/fisiología , Lóbulo Parietal/fisiología , Estimulación Luminosa , Movimientos Sacádicos , Corteza Somatosensorial/fisiología , Percepción Visual/fisiología , Adulto Joven
13.
Elife ; 92020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32945257

RESUMEN

When humans indicate on which hand a tactile stimulus occurred, they often err when their hands are crossed. This finding seemingly supports the view that the automatically determined touch location in external space affects limb assignment: the crossed right hand is localized in left space, and this conflict presumably provokes hand assignment errors. Here, participants judged on which hand the first of two stimuli, presented during a bimanual movement, had occurred, and then indicated its external location by a reach-to-point movement. When participants incorrectly chose the hand stimulated second, they pointed to where that hand had been at the correct, first time point, though no stimulus had occurred at that location. This behavior suggests that stimulus localization depended on hand assignment, not vice versa. It is, thus, incompatible with the notion of automatic computation of external stimulus location upon occurrence. Instead, humans construct external touch location post-hoc and on demand.


Asunto(s)
Percepción Espacial/fisiología , Percepción del Tacto/fisiología , Tacto/fisiología , Adulto , Femenino , Lateralidad Funcional , Humanos , Masculino , Adulto Joven
14.
J Exp Psychol Hum Percept Perform ; 46(7): 697-715, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32324033

RESUMEN

Natural motor behavior is usually refined by ongoing sensory input in closed feedback loops. Research has suggested that humans make systematic errors when localizing touch on the skin, and that perceptual body representations underlying these behaviors are distorted. However, experimental procedures usually prevent participants from touching the target limb, interrupting the natural action-perception loop. It is currently unknown how such experimental strategies affect localization and systematic perceptual distortions. Here, participants received a brief touch on their left forearm and, with closed eyes, searched for the target location by moving the right index finger across the left arm. Tactile search significantly reduced the localization error present at touchdown of the searching finger on the target arm. Localization improvement was largely absent when a barrier above the target arm prevented online tactile feedback of the target region. Vision of the arms while reaching to, and searching on, the skin, greatly reduced the localization error at touchdown, but tactile search further improved localization slightly. Thus, both tactile and visual feedback help matching the positions of reaching and target limbs during localization. Yet, even if small, the unique improvement through tactile information confirms the importance of target-related, closed-loop tactile feedback for tactile localization. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Asunto(s)
Retroalimentación Sensorial , Orientación Espacial , Orientación , Reconocimiento Visual de Modelos , Tacto , Adolescente , Adulto , Concienciación , Femenino , Humanos , Juicio , Masculino , Adulto Joven
15.
Curr Biol ; 29(24): R1301-R1303, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31846674

RESUMEN

Humans localize touch on hand-held tools by interpreting the unique vibratory patterns elicited by impact to different parts of the tool. This perceptual strategy differs markedly from localizing touch on the skin. A new study shows that, nonetheless, touch location is probably processed similarly for skin and tool already early in somatosensory cortex.


Asunto(s)
Percepción del Tacto , Tacto , Humanos , Piel , Corteza Somatosensorial
16.
PLoS One ; 14(10): e0223986, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31626636

RESUMEN

Posterior parietal cortex (PPC) is central to sensorimotor processing for goal-directed hand and foot movements. Yet, the specific role of PPC subregions in these functions is not clear. Previous human neuroimaging and transcranial magnetic stimulation (TMS) work has suggested that PPC lateral to the intraparietal sulcus (IPS) is involved in directing the arm, shaping the hand, and correcting both finger-shaping and hand trajectory during movement. The lateral localization of these functions agrees with the comparably lateral position of the hand and fingers within the motor and somatosensory homunculi along the central sulcus; this might suggest that, in analogy, (goal-directed) foot movements would be mediated by medial portions of PPC. However, foot movement planning activates similar regions for both hand and foot movement along the caudal-to-rostral axis of PPC, with some effector-specificity evident only rostrally, near the central regions of sensorimotor cortex. Here, we attempted to test the causal involvement of PPC regions medial to IPS in hand and foot reaching as well as online correction evoked by target displacement. Participants made hand and foot reaches towards identical visual targets. Sometimes, the target changed position 100-117 ms into the movement. We disturbed cortical processing over four positions medial to IPS with three pulses of TMS separated by 40 ms, both during trials with and without target displacement. We timed TMS to disrupt reach execution and online correction. TMS did not affect endpoint error, endpoint variability, or reach trajectories for hand or foot. While these negative results await replication with different TMS timing and parameters, we conclude that regions medial to IPS are involved in planning, rather than execution and online control, of goal-directed limb movements.


Asunto(s)
Pie/fisiología , Mano/fisiología , Lóbulo Parietal/fisiología , Adulto , Femenino , Humanos , Masculino , Movimiento , Estimulación Luminosa , Desempeño Psicomotor , Estimulación Magnética Transcraneal , Adulto Joven
17.
Prog Neurobiol ; 183: 101691, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31499087

RESUMEN

Posterior parietal cortex (PPC) has been implicated in sensory and motor processing, but its underlying organization is still debated. Sensory-based accounts suggest that PPC is mainly involved in attentional selection and multisensory integration, serving novelty detection and information seeking. Motor-specific accounts suggest a parietal subdivision into lower-dimensional, effector-specific subspaces for planning motor action. More recently, function-based interpretations have been put forward based on coordinated responses across multiple effectors evoked by circumscribed PPC regions. In this review, we posit that an overarching interpretation of PPC's functional organization must integrate, rather than contrast, these various accounts of PPC. We propose that PPC's main role is that of a state estimator that extends into two poles: a rostral, body-related pole that projects the environment onto the body and a caudal, environment-related pole that projects the body into an environment landscape. The combined topology interweaves perceptual, motor, and function-specific principles, and suggests that actions are specified by top-down guided optimization of body-environment interactions.


Asunto(s)
Mapeo Encefálico , Actividad Motora/fisiología , Lóbulo Parietal/fisiología , Percepción/fisiología , Desempeño Psicomotor/fisiología , Animales , Humanos
18.
Sci Rep ; 9(1): 9215, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31239467

RESUMEN

We investigated the function of oscillatory alpha-band activity in the neural coding of spatial information during tactile processing. Sighted humans concurrently encode tactile location in skin-based and, after integration with posture, external spatial reference frames, whereas congenitally blind humans preferably use skin-based coding. Accordingly, lateralization of alpha-band activity in parietal regions during attentional orienting in expectance of tactile stimulation reflected external spatial coding in sighted, but skin-based coding in blind humans. Here, we asked whether alpha-band activity plays a similar role in spatial coding for tactile processing, that is, after the stimulus has been received. Sighted and congenitally blind participants were cued to attend to one hand in order to detect rare tactile deviant stimuli at this hand while ignoring tactile deviants at the other hand and tactile standard stimuli at both hands. The reference frames encoded by oscillatory activity during tactile processing were probed by adopting either an uncrossed or crossed hand posture. In sighted participants, attended relative to unattended standard stimuli suppressed the power in the alpha-band over ipsilateral centro-parietal and occipital cortex. Hand crossing attenuated this attentional modulation predominantly over ipsilateral posterior-parietal cortex. In contrast, although contralateral alpha-activity was enhanced for attended versus unattended stimuli in blind participants, no crossing effects were evident in the oscillatory activity of this group. These findings suggest that oscillatory alpha-band activity plays a pivotal role in the neural coding of external spatial information for touch.


Asunto(s)
Ritmo alfa , Ceguera/congénito , Ceguera/fisiopatología , Estimulación Física , Percepción del Tacto , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Adulto Joven
19.
Curr Biol ; 29(9): 1491-1497.e4, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30955931

RESUMEN

Where we perceive a touch putatively depends on topographic maps that code the touch's location on the skin [1] as well as its position in external space [2-5]. However, neither somatotopic nor external-spatial representations can account for atypical tactile percepts in some neurological patients and amputees; referral of touch to an absent or anaesthetized hand after stimulation of a foot [6, 7] or the contralateral hand [8-10] challenges the role of topographic representations when attributing touch to the limbs. Here, we show that even healthy adults systematically misattribute touch to other limbs. Participants received two tactile stimuli, each to a different limb-hand or foot-and reported which of all four limbs had been stimulated first. Hands and feet were either uncrossed or crossed to dissociate body-based and external-spatial representations [11-14]. Remarkably, participants regularly attributed the first touch to a limb that had received neither of the two stimuli. The erroneously reported, non-stimulated limb typically matched the correct limb with respect to limb type or body side. Touch was misattributed to non-stimulated limbs of the other limb type and body side only if they were placed at the correct limb's canonical (default) side of space. The touch's actual location in external space was irrelevant. These errors replicated across several contexts, and modeling linked them to incoming sensory evidence rather than to decision strategies. The results highlight the importance of the touched body part's identity and canonical location but challenge the role of external-spatial tactile representations when attributing touch to a limb.


Asunto(s)
Pie/fisiología , Mano/fisiología , Percepción del Tacto/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
20.
Br J Dev Psychol ; 36(3): 384-401, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29226463

RESUMEN

This study focuses on how the body schema develops during the first months of life, by investigating infants' motor responses to localized vibrotactile stimulation on their limbs. Vibrotactile stimulation was provided by small buzzers that were attached to the infants' four limbs one at a time. Four age groups were compared cross-sectionally (3-, 4-, 5-, and 6-month-olds). We show that before they actually reach for the buzzer, which, according to previous studies, occurs around 7-8 months of age, infants demonstrate emerging knowledge about their body's configuration by producing specific movement patterns associated with the stimulated body area. At 3 months, infants responded with an increase in general activity when the buzzer was placed on the body, independently of the vibrator's location. Differentiated topographical awareness of the body seemed to appear around 5 months, with specific responses resulting from stimulation of the hands emerging first, followed by the differentiation of movement patterns associated with the stimulation of the feet. Qualitative analyses revealed specific movement types reliably associated with each stimulated location by 6 months of age, possibly preparing infants' ability to actually reach for the vibrating target. We discuss this result in relation to newborns' ability to learn specific movement patterns through intersensory contingency. Statement of contribution what is already known on infants' sensorimotor knowledge about their own bodies 3-month-olds readily learn to produce specific limb movements to obtain a desired effect (movement of a mobile). infants detect temporal and spatial correspondences between events involving their own body and visual events. what the present study adds until 4-5 months of age, infants mostly produce general motor responses to localized touch. this is because in the present study, infants could not rely on immediate contingent feedback. we propose a cephalocaudal developmental trend of topographic differentiation of body areas.


Asunto(s)
Desarrollo Infantil/fisiología , Extremidades/fisiología , Conducta del Lactante/fisiología , Movimiento/fisiología , Percepción del Tacto/fisiología , Estudios Transversales , Femenino , Humanos , Lactante , Masculino , Estimulación Física , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...