Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Elife ; 122023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37267120

RESUMEN

The reasons for poor healing of pressure injuries are poorly understood. Vascular ulcers are worsened by extracellular release of hemoglobin, so we examined the impact of myoglobin (Mb) iron in murine muscle pressure injuries (mPI). Tests used Mb-knockout or treatment with deferoxamine iron chelator (DFO). Unlike acute injuries from cardiotoxin, mPI regenerated poorly with a lack of viable immune cells, persistence of dead tissue (necro-slough), and abnormal deposition of iron. However, Mb-knockout or DFO-treated mPI displayed a reversal of the pathology: decreased tissue death, decreased iron deposition, decrease in markers of oxidative damage, and higher numbers of intact immune cells. Subsequently, DFO treatment improved myofiber regeneration and morphology. We conclude that myoglobin iron contributes to tissue death in mPI. Remarkably, a large fraction of muscle death in untreated mPI occurred later than, and was preventable by, DFO treatment, even though treatment started 12 hr after pressure was removed. This demonstrates an opportunity for post-pressure prevention to salvage tissue viability.


Asunto(s)
Hierro , Úlcera por Presión , Ratones , Humanos , Animales , Deferoxamina/farmacología , Mioglobina , Necrosis , Músculos
2.
J R Soc Interface ; 19(187): 20210631, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35193390

RESUMEN

Chronic and recurring pressure ulcers (PUs) create an unmet need for predictive biomarkers. In this work, we examine the panniculus carnosus, a thin cutaneous muscle, traditionally considered vestigial in humans, and ask whether the panniculus may play a role in the chronicity and reinjury of heel PUs. To determine whether humans have a panniculus muscle layer at the heel, we dissected eight cadavers. To assess the influence of the panniculus layer on PU, we performed computational simulations of supine weight bearing. Finally, we assessed panniculus regeneration in fluorescent mice. Results show a panniculus layer present in all cadavers examined. Simulations show a thin layer of panniculus muscle causes a dramatic decrease in the volume of soft tissue experiencing high strain and stress, compared to a heel without a panniculus. Importantly, in the mouse model, the panniculus fails to regenerate after PU, even when other cutaneous layers had fully regenerated. Our work shows that the panniculus is able to redistribute load around the heel bone, which might allow it to prevent PUs. Moreover, it is highly susceptible to incomplete regeneration after PU. Poor panniculus regeneration after PU might be a predictive anatomical biomarker for recurrence, and this biomarker should be evaluated prospectively in future clinical trials.


Asunto(s)
Úlcera por Presión , Animales , Modelos Animales de Enfermedad , Ratones , Músculos , Úlcera por Presión/prevención & control , Piel
3.
Optica ; 4(5): 546-556, 2017 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-29392168

RESUMEN

Imaging Fourier-transform spectroscopy (IFTS) is a powerful method for biological hyperspectral analysis based on various imaging modalities, such as fluorescence or Raman. Since the measurements are taken in the Fourier space of the spectrum, it can also take advantage of compressed sensing strategies. IFTS has been readily implemented in high-throughput, high-content microscope systems based on wide-field imaging modalities. However, there are limitations in existing wide-field IFTS designs. Non-common-path approaches are less phase-stable. Alternatively, designs based on the common-path Sagnac interferometer are stable, but incompatible with high-throughput imaging. They require exhaustive sequential scanning over large interferometric path delays, making compressive strategic data acquisition impossible. In this paper, we present a novel phase-stable, near-common-path interferometer enabling high-throughput hyperspectral imaging based on strategic data acquisition. Our results suggest that this approach can improve throughput over those of many other wide-field spectral techniques by more than an order of magnitude without compromising phase stability.

4.
BMC Syst Biol ; 10(Suppl 5): 124, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-28105947

RESUMEN

BACKGROUND: Confetti fluorescence and other multi-color genetic labelling strategies are useful for observing stem cell regeneration and for other problems of cell lineage tracing. One difficulty of such strategies is segmenting the cell boundaries, which is a very different problem from segmenting color images from the real world. This paper addresses the difficulties and presents a superpixel-based framework for segmentation of regenerated muscle fibers in mice. RESULTS: We propose to integrate an edge detector into a superpixel algorithm and customize the method for multi-channel images. The enhanced superpixel method outperforms the original and another advanced superpixel algorithm in terms of both boundary recall and under-segmentation error. Our framework was applied to cross-section and lateral section images of regenerated muscle fibers from confetti-fluorescent mice. Compared with "ground-truth" segmentations, our framework yielded median Dice similarity coefficients of 0.92 and higher. CONCLUSION: Our segmentation framework is flexible and provides very good segmentations of multi-color muscle fibers. We anticipate our methods will be useful for segmenting a variety of tissues in confetti fluorecent mice and in mice with similar multi-color labels.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía , Células Musculares/citología , Algoritmos , Núcleo Celular/metabolismo
5.
Nucleic Acid Ther ; 24(1): 25-36, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24320790

RESUMEN

Antisense oligonucleotide (AON)-mediated exon skipping is a promising therapeutic approach for Duchenne muscular dystrophy that is currently being tested in various clinical trials. This approach is based on restoring the open reading frame of dystrophin transcripts resulting in shorter but partially functional dystrophin proteins as found in patients with Becker muscular dystrophy. After systemic administration, a large proportion of AONs ends up in the liver and kidneys. Therefore, enhancing AON uptake by skeletal and cardiac muscle would improve the AONs' therapeutic effect. For phosphorodiamidate morpholino oligomer, AONs use nonspecific positively charged cell penetrating peptides to enhance efficacy. However, this is challenging for negatively charged 2'-O-methyl phosphorothioate oligomer. Therefore, we screened a 7-mer phage display peptide library to identify muscle and heart homing peptides in vivo in the mdx mouse model and found a promising candidate peptide capable of binding muscle cells in vitro and in vivo. Upon systemic administration in dystrophic mdx mice, conjugation of a 2'-O-methyl phosphorothioate AON to this peptide indeed improved uptake in skeletal and cardiac muscle, and resulted in higher exon skipping levels with a significant difference in heart and diaphragm. Based on these results, peptide conjugation represents an interesting strategy to enhance the therapeutic effect of exon skipping with 2'-O-methyl phosphorothioate AONs for Duchenne muscular dystrophy.


Asunto(s)
Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Fosforotioatos/química , Oligonucleótidos Fosforotioatos/uso terapéutico , Animales , Distrofina/genética , Exones , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Mutación , Miocardio/metabolismo , Oligonucleótidos Antisentido/genética , Biblioteca de Péptidos , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/genética , Ácidos Nucleicos de Péptidos/uso terapéutico , Oligonucleótidos Fosforotioatos/genética , Reparación del Gen Blanco/métodos
6.
FASEB J ; 27(6): 2484-95, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23460734

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder caused by the lack of functional dystrophin. There is no cure, but several clinical trials aimed to restore the synthesis of functional dystrophin are underway. The dystrophin levels needed for improvement of muscle pathology, function, and overall vitality are not known. Here, we describe the mdx/utrn(-/-)/Xist(Δhs) mouse model, which expresses a range of low dystrophin levels, depending on the degree of skewing of X inactivation in a utrophin-negative background. Mdx/utrn(-/-) mice develop severe muscle weakness, kyphosis, respiratory and heart failure, and premature death closely resembling DMD pathology. We show that at dystrophin levels < 4%, survival and motor function in these animals are greatly improved. In mice expressing >4% dystrophin, histopathology is ameliorated, as well. These findings suggest that the dystrophin levels needed to benefit vitality and functioning of patients with DMD might be lower than those needed for full protection against muscle damage.


Asunto(s)
Distrofina/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/fisiopatología , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Utrofina/deficiencia , Animales , Biomarcadores/sangre , Distrofina/deficiencia , Distrofina/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Fuerza Muscular/genética , Fuerza Muscular/fisiología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Fenotipo , Utrofina/genética
7.
Methods Mol Biol ; 867: 379-92, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22454074

RESUMEN

Antisense-mediated exon skipping has shown to be a promising therapeutic approach and is in clinical trials for Duchenne muscular dystrophy. However, after systemic treatment the majority of the injected antisense oligonucleotides (AONs) will not end up in the intended tissue. This mistargeting of AONs might have detrimental effects, especially with long-term treatment and continuous accumulation of AONs. Further, even when no detrimental effects occur, mistargeted AONs are lost for exon skipping in the intended tissue. One way to reduce the amount of mistargeted AONs is by adding a peptide that specifically binds to and is taken up by the intended tissue. Such peptides can be found by screening phage display libraries. With in silico, in vitro, and in vivo testing, the peptides that bind the intended tissue most efficiently and most specifically can be identified.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Músculos/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/farmacocinética , Biblioteca de Péptidos , Péptidos/química , Animales , Línea Celular , Células Cultivadas , Humanos , Ratones , Oligonucleótidos Antisentido/química , Péptidos/metabolismo
8.
Mol Ther Nucleic Acids ; 1: e44, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-23344236

RESUMEN

Antisense-mediated exon skipping for Duchenne muscular dystrophy (DMD) is currently tested in phase 3 clinical trials. The aim of this approach is to modulate splicing by skipping a specific exon to reframe disrupted dystrophin transcripts, allowing the synthesis of a partly functional dystrophin protein. Studies in animal models allow detailed analysis of the pharmacokinetic and pharmacodynamic profile of antisense oligonucleotides (AONs). Here, we tested the safety and efficacy of subcutaneously administered 2'-O-methyl phosphorothioate AON at 200 mg/kg/week for up to 6 months in mouse models with varying levels of disease severity: mdx mice (mild phenotype) and mdx mice with one utrophin allele (mdx/utrn(+/-); more severe phenotype). Long-term treatment was well tolerated and exon skipping and dystrophin restoration confirmed for all animals. Notably, in the more severely affected mdx/utrn(+/-) mice the therapeutic effect was larger: creatine kinase (CK) levels were more decreased and rotarod running time was more increased. This suggests that the mdx/utrn(+/-) model may be a more suitable model to test potential therapies than the regular mdx mouse. Our results also indicate that long-term subcutaneous treatment in dystrophic mouse models with these AONs is safe and beneficial.Molecular Therapy-Nucleic Acids (2012) 1, e44; doi:10.1038/mtna.2012.38; published online 4 September 2012.

9.
Anal Biochem ; 421(2): 622-31, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22178910

RESUMEN

Phage display screenings are frequently employed to identify high-affinity peptides or antibodies. Although successful, phage display is a laborious technology and is notorious for identification of false positive hits. To accelerate and improve the selection process, we have employed Illumina next generation sequencing to deeply characterize the Ph.D.-7 M13 peptide phage display library before and after several rounds of biopanning on KS483 osteoblast cells. Sequencing of the naive library after one round of amplification in bacteria identifies propagation advantage as an important source of false positive hits. Most important, our data show that deep sequencing of the phage pool after a first round of biopanning is already sufficient to identify positive phages. Whereas traditional sequencing of a limited number of clones after one or two rounds of selection is uninformative, the required additional rounds of biopanning are associated with the risk of losing promising clones propagating slower than nonbinding phages. Confocal and live cell imaging confirms that our screen successfully selected a peptide with very high binding and uptake in osteoblasts. We conclude that next generation sequencing can significantly empower phage display screenings by accelerating the finding of specific binders and restraining the number of false positive hits.


Asunto(s)
Bacteriófago M13/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biblioteca de Péptidos , Animales , Línea Celular , Ratones
10.
Hum Gene Ther ; 23(3): 262-73, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22017442

RESUMEN

In Duchenne muscular dystrophy (DMD), dystrophin deficiency leading to progressive muscular degeneration is caused by frame-shifting mutations in the DMD gene. Antisense oligonucleotides (AONs) aim to restore the reading frame by skipping of a specific exon(s), thereby allowing the production of a shorter, but semifunctional protein, as is found in the mostly more mildly affected patients with Becker muscular dystrophy. AONs are currently being investigated in phase 3 placebo-controlled clinical trials. Most of the participating patients are treated symptomatically with corticosteroids (mainly predniso[lo]ne) to stabilize the muscle fibers, which might affect the uptake and/or efficiency of AONs. Therefore the effect of prednisolone on 2'-O-methyl phosphorothioate AON efficacy in patient-derived cultured muscle cells and the mdx mouse model (after local and systemic AON treatment) was assessed in this study. Both in vitro and in vivo skip efficiency and biomarker expression were comparable between saline- and prednisolone-cotreated cells and mice. After systemic exon 23-specific AON (23AON) treatment for 8 weeks, dystrophin was detectable in all treated mice. Western blot analyses indicated slightly higher dystrophin levels in prednisolone-treated mice, which might be explained by better muscle condition and consequently more target dystrophin pre-mRNA. In addition, fibrotic and regeneration biomarkers were normalized to some extent in prednisolone- and/or 23AON-treated mice. Overall these results show that the use of prednisone forms no barrier to participation in clinical trials with AONs.


Asunto(s)
Exones , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido/metabolismo , Prednisolona/administración & dosificación , Animales , Células Cultivadas , Distrofina/genética , Distrofina/metabolismo , Terapia Genética , Humanos , Ratones , Ratones Endogámicos mdx , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Prednisolona/uso terapéutico
11.
Lab Invest ; 90(9): 1396-402, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20458276

RESUMEN

Antisense oligonucleotide (AON)-mediated exon skipping aimed at restoring the reading frame is a promising therapeutic approach for Duchenne muscular dystrophy that is currently tested in clinical trials. Numerous AONs have been tested in (patient-derived) cultured muscle cells and the mdx mouse model. The main outcome to measure AON efficiency is usually the exon-skipping percentage, though different groups use different methods to assess these percentages. Here, we compare a series of techniques to quantify exon skipping levels in AON-treated mdx mouse muscle. We compared densitometry of RT-PCR products on ethidium bromide-stained agarose gels, primary and nested RT-PCR followed by bioanalyzer analysis and melting curve analysis. The digital array system (Fluidigm) allows absolute quantification of skipped vs non-skipped transcripts and was used as a reference. Digital array results show that 1 ng of mdx gastrocnemius muscle-derived mRNA contains approximately 1100 dystrophin transcripts and that 665 transcripts are sufficient to determine exon-skipping levels. Quantification using bioanalyzer or densitometric analysis of primary PCR products resulted in values close to those obtained with digital array. The use of the same technique allows comparison between different groups working on exon skipping in the mdx mouse model.


Asunto(s)
Distrofina/genética , Exones/genética , Distrofia Muscular de Duchenne/genética , ARN Mensajero/genética , Animales , Células Cultivadas , Ratones , Ratones Endogámicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne/terapia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Mol Ther ; 18(6): 1210-7, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20407428

RESUMEN

Antisense oligonucleotides (AONs) are being developed as RNA therapeutic molecules for Duchenne muscular dystrophy. For oligonucleotides with the 2'-O-methyl-phosphorothioate (2OMePS) RNA chemistry, proof of concept has been obtained in patient-specific muscle cell cultures, the mouse and dog disease models, and recently by local administration in Duchenne patients. To further explore the pharmacokinetic (PK)/pharmacodynamic (PD) properties of this chemical class of oligonucleotides, we performed a series of preclinical studies in mice. The results demonstrate that the levels of oligonucleotides in dystrophin-deficient muscle fibers are much higher than in healthy fibers, leading to higher exon-skipping levels. Oligonucleotide levels and half-life differed for specific muscle groups, with heart muscle showing the lowest levels but longest half-life (approximately 46 days). Intravenous (i.v.), subcutaneous (s.c.), and intraperitoneal (i.p.) delivery methods were directly compared. For each method, exon-skipping and novel dystrophin expression were observed in all muscles, including arrector pili smooth muscle in skin biopsies. After i.v. administration, the oligonucleotide peak levels in plasma, liver, and kidney were higher than after s.c. or i.p. injections. However, as the bioavailability was similar, and the levels of oligonucleotide, exon-skipping, and dystrophin steadily accumulated overtime after s.c. administration, we selected this patient-convenient delivery method for future clinical study protocols.


Asunto(s)
Oligonucleótidos Fosforotioatos/farmacología , ARN sin Sentido/farmacología , Animales , Western Blotting , Modelos Animales de Enfermedad , Distrofina/administración & dosificación , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos mdx , Oligonucleótidos Fosforotioatos/farmacocinética , ARN sin Sentido/farmacocinética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Ann N Y Acad Sci ; 1175: 71-9, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19796079

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disease caused by frame shifting and nonsense mutations in the dystrophin gene. Through skipping of an (additional) exon from the pre-mRNA, the reading frame can be restored. This can be achieved with antisense oligonucleotides (AONs), which induce exon skipping by binding to splice sites or splice enhancer sites. The resulting protein will be shorter but at least partially functional. So far, exon skipping has been very successful in cell cultures, in mouse and dog models, and even in a first exploratory study in patients. Current research mainly focuses on optimization of systemic AON delivery. Here we give an overview of the available mouse models. To obtain the most informative results for future clinical application, research may have to move from the currently preferred mdx mouse to mouse models more comparable to patients, such as the utrophin/dystrophin-negative mouse and the hDMD mouse models. Further, we briefly discuss two AON backbone chemistries that are currently in clinical trials for DMD exon skipping. We propose that different chemistries should be further developed in parallel in order to hasten the transfer of the exon skipping therapy to the clinic.


Asunto(s)
Exones/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/química , Oligonucleótidos Fosforotioatos/administración & dosificación , Oligonucleótidos Fosforotioatos/química , Animales , Modelos Animales de Enfermedad , Perros , Humanos , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Fosforotioatos/genética
14.
J Gene Med ; 11(3): 257-66, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19140108

RESUMEN

BACKGROUND: Antisense-mediated exon skipping is a putative treatment for Duchenne muscular dystrophy (DMD). Using antisense oligonucleotides (AONs), the disrupted DMD reading frame is restored, allowing generation of partially functional dystrophin and conversion of a severe Duchenne into a milder Becker muscular dystrophy phenotype. In vivo studies are mainly performed using 2'-O-methyl phosphorothioate (2OMePS) or morpholino (PMO) AONs. These compounds were never directly compared. METHODS: mdx and humanized (h)DMD mice were injected intramuscularly and intravenously with short versus long 2OMePS and PMO for mouse exon 23 and human exons 44, 45, 46 and 51. RESULTS: Intramuscular injection showed that increasing the length of 2OMePS AONs enhanced skipping efficiencies of human exon 45, but decreased efficiency for mouse exon 23. Although PMO induced more mouse exon 23 skipping, PMO and 2OMePS were more comparable for human exons. After intravenous administration, exon skipping and novel protein was shown in the heart with both chemistries. Furthermore, PMO showed lower intramuscular concentrations with higher exon 23 skipping levels compared to 2OMePS, which may be due to sequestration in the extracellular matrix. Finally, two mismatches rendered 2OMePS but not PMO AONs nearly ineffective. CONCLUSIONS: The results obtained in the present study indicate that increasing AON length improves skipping efficiency in some but not all cases. It is feasible to induce exon skipping and dystrophin restoration in the heart after injection of 2OMePS and unconjugated PMO. Furthermore, differences in efficiency between PMO and 2OMePS appear to be sequence and not chemistry dependent. Finally, the results indicate that PMOs may be less sequence specific than 2OMePS.


Asunto(s)
Exones/genética , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Distrofia Muscular de Duchenne , Oligonucleótidos Antisentido , Oligonucleótidos Fosforotioatos , Animales , Secuencia de Bases , Humanos , Ratones , Ratones Endogámicos mdx , Datos de Secuencia Molecular , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Miocardio/citología , Miocardio/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Oligonucleótidos Fosforotioatos/administración & dosificación , Oligonucleótidos Fosforotioatos/genética
15.
Mol Ther ; 17(3): 548-53, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18813282

RESUMEN

Antisense oligonucleotides (AONs) can interfere with mRNA processing through RNase H-mediated degradation, translational arrest, or modulation of splicing. The antisense approach relies on AONs to efficiently bind to target sequences and depends on AON length, sequence content, secondary structure, thermodynamic properties, and target accessibility. We here performed a retrospective analysis of a series of 156 AONs (104 effective, 52 ineffective) previously designed and evaluated for splice modulation of the dystrophin transcript. This showed that the guanine-cytosine content and the binding energies of AON-target and AON-AON complexes were significantly higher for effective AONs. Effective AONs were also located significantly closer to the acceptor splice site (SS). All analyzed AONs are exon-internal and may act through steric hindrance of Ser-Arg-rich (SR) proteins to exonic splicing enhancer (ESE) sites. Indeed, effective AONs were significantly enriched for ESEs predicted by ESE software programs, except for predicted binding sites of SR protein Tra2beta, which were significantly enriched in ineffective AONs. These findings compile guidelines for development of AONs and provide more insight into the mechanism of antisense-mediated exon skipping. On the basis of only four parameters, we could correctly classify 79% of all AONs as effective or ineffective, suggesting these parameters can be used to more optimally design splice-modulating AONs.


Asunto(s)
Oligonucleótidos Antisentido/genética , Empalme del ARN/genética , Secuencia de Bases , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/clasificación , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...