Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Mol Ther ; 26(1): 320-328, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29102562

RESUMEN

Gene therapy currently in development for hemoglobinopathies utilizes ex vivo lentiviral transduction of CD34+ hematopoietic stem and progenitor cells (HSPCs). A small-molecule screen identified prostaglandin E2 (PGE2) as a positive mediator of lentiviral transduction of CD34+ cells. Supplementation with PGE2 increased lentiviral vector (LVV) transduction of CD34+ cells approximately 2-fold compared to control transduction methods with no effect on cell viability. Transduction efficiency was consistently increased in primary CD34+ cells from multiple normal human donors and from patients with ß-thalassemia or sickle cell disease. Notably, PGE2 increased transduction of repopulating human HSPCs in an immune-deficient (nonobese diabetic/severe combined immunodeficiency/interleukin-2 gamma receptor null [NSG]) xenotransplantation mouse model without evidence of in vivo toxicity, lineage bias, or a de novo bias of lentiviral integration sites. These data suggest that PGE2 improves lentiviral transduction and increases vector copy number, therefore resulting in increased transgene expression. As a result, PGE2 may be useful in clinical gene therapy applications using lentivirally modified HSPCs.


Asunto(s)
Dinoprostona/metabolismo , Vectores Genéticos/genética , Células Madre Hematopoyéticas/metabolismo , Lentivirus/genética , Transducción Genética , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Animales , Antígenos CD34/metabolismo , Línea Celular , Biblioteca de Genes , Técnicas de Transferencia de Gen , Terapia Genética , Globinas/genética , Humanos , Antígenos Comunes de Leucocito/metabolismo , Ratones , Transgenes , Trasplante Heterólogo , Internalización del Virus , Talasemia beta/genética , Talasemia beta/metabolismo
3.
Nature ; 523(7561): 468-71, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26201599

RESUMEN

Haematopoietic stem and progenitor cell (HSPC) transplant is a widely used treatment for life-threatening conditions such as leukaemia; however, the molecular mechanisms regulating HSPC engraftment of the recipient niche remain incompletely understood. Here we develop a competitive HSPC transplant method in adult zebrafish, using in vivo imaging as a non-invasive readout. We use this system to conduct a chemical screen, and identify epoxyeicosatrienoic acids (EETs) as a family of lipids that enhance HSPC engraftment. The pro-haematopoietic effects of EETs were conserved in the developing zebrafish embryo, where 11,12-EET promoted HSPC specification by activating a unique activator protein 1 (AP-1) and runx1 transcription program autonomous to the haemogenic endothelium. This effect required the activation of the phosphatidylinositol-3-OH kinase (PI(3)K) pathway, specifically PI(3)Kγ. In adult HSPCs, 11,12-EET induced transcriptional programs, including AP-1 activation, which modulate several cellular processes, such as migration, to promote engraftment. Furthermore, we demonstrate that the EET effects on enhancing HSPC homing and engraftment are conserved in mammals. Our study establishes a new method to explore the molecular mechanisms of HSPC engraftment, and discovers a previously unrecognized, evolutionarily conserved pathway regulating multiple haematopoietic generation and regeneration processes. EETs may have clinical application in marrow or cord blood transplantation.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Pez Cebra/embriología , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animales , Línea Celular , Movimiento Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Femenino , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Riñón/citología , Masculino , Ratones , Fosfatidilinositol 3-Quinasas , Factor de Transcripción AP-1/metabolismo , Transcripción Genética
4.
Proc Natl Acad Sci U S A ; 111(44): 15768-73, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25324523

RESUMEN

Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitotic entry. We found that the pluripotency transcription factor Oct4 (octamer-binding transcription factor 4) plays an unappreciated role in the ES cell cycle by forming a complex with cyclin-Cdk1 and inhibiting Cdk1 activation. Ectopic expression of Oct4 or a mutant lacking transcriptional activity recapitulated delayed mitotic entry in HeLa cells. Reduction of Oct4 levels in ES cells accelerated G2 progression, which led to increased chromosomal missegregation and apoptosis. Our data demonstrate an unexpected nontranscriptional function of Oct4 in the regulation of mitotic entry.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Células Madre Embrionarias/metabolismo , Fase G2/fisiología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Animales , Proteína Quinasa CDC2 , Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , Ciclinas/metabolismo , Células Madre Embrionarias/citología , Activación Enzimática/fisiología , Fase G1/fisiología , Células HeLa , Humanos , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(2): E141-50, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23236128

RESUMEN

During development, the hematopoietic lineage transits through hemogenic endothelium, but the signaling pathways effecting this transition are incompletely characterized. Although the Hedgehog (Hh) pathway is hypothesized to play a role in patterning blood formation, early embryonic lethality of mice lacking Hh signaling precludes such analysis. To determine a role for Hh signaling in patterning of hemogenic endothelium, we assessed the effect of altered Hh signaling in differentiating mouse ES cells, cultured mouse embryos, and developing zebrafish embryos. In differentiating mouse ES cells and mouse yolk sac cultures, addition of Indian Hh ligand increased hematopoietic progenitors, whereas chemical inhibition of Hh signaling reduced hematopoietic progenitors without affecting primitive streak mesoderm formation. In the setting of Hh inhibition, induction of either Notch signaling or overexpression of Stem cell leukemia (Scl)/T-cell acute lymphocytic leukemia protein 1 rescued hemogenic vascular-endothelial cadherin(+) cells and hematopoietic progenitor formation. Together, our results reveal that Scl overexpression is sufficient to rescue the developmental defects caused by blocking the Hh and Notch pathways, and inform our understanding of the embryonic endothelial-to-hematopoietic transition.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Endotelio/fisiología , Proteínas Hedgehog/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas Proto-Oncogénicas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Ensayo de Unidades Formadoras de Colonias , Embrión de Mamíferos , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/fisiología , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Proteína 1 de la Leucemia Linfocítica T Aguda , Pez Cebra
6.
Cell ; 147(3): 577-89, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22036566

RESUMEN

BMP and Wnt signaling pathways control essential cellular responses through activation of the transcription factors SMAD (BMP) and TCF (Wnt). Here, we show that regeneration of hematopoietic lineages following acute injury depends on the activation of each of these signaling pathways to induce expression of key blood genes. Both SMAD1 and TCF7L2 co-occupy sites with master regulators adjacent to hematopoietic genes. In addition, both SMAD1 and TCF7L2 follow the binding of the predominant lineage regulator during differentiation from multipotent hematopoietic progenitor cells to erythroid cells. Furthermore, induction of the myeloid lineage regulator C/EBPα in erythroid cells shifts binding of SMAD1 to sites newly occupied by C/EBPα, whereas expression of the erythroid regulator GATA1 directs SMAD1 loss on nonerythroid targets. We conclude that the regenerative response mediated by BMP and Wnt signaling pathways is coupled with the lineage master regulators to control the gene programs defining cellular identity.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Hematopoyesis , Transducción de Señal , Vía de Señalización Wnt , Animales , Proteínas de Unión al ADN/metabolismo , Humanos , Regeneración , Proteína Smad1/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Pez Cebra
7.
Stem Cells ; 29(11): 1774-82, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21898686

RESUMEN

Hematopoietic stem cells (HSCs) must exhibit tight regulation of both self-renewal and differentiation to maintain homeostasis of the hematopoietic system as well as to avoid aberrations in growth that may result in leukemias or other disorders. In this study, we sought to understand the molecular basis of lineage determination, with particular focus on factors that influence megakaryocyte/erythrocyte-lineage commitment, in hematopoietic stem and progenitor cells. We used intracellular flow cytometry to identify two novel hematopoietic progenitor populations within the mouse bone-marrow cKit(+) Lineage (-) Sca1(+) (KLS) Flk2 (+) compartment that differ in their protein-level expression of GATA1, a critical megakaryocyte/erythrocyte-promoting transcription factor. GATA1-high repopulating cells exhibited the cell surface phenotype KLS Flk2(+ to int), CD150(int), CD105(+), cMPL(+), and were termed "FSE cells." GATA1-low progenitors were identified as KLS Flk2(+), CD150(-), and cMPL(-), and were termed "Flk(+) CD150(-) cells." FSE cells had increased megakaryocyte/platelet potential in culture and transplant settings and exhibited a higher clonal frequency of colony-forming unit-spleen activity compared with Flk(+) CD150(-) cells, suggesting functional consequences of GATA1 upregulation in promoting megakaryocyte and erythroid lineage priming. Activation of ERK and AKT signal-transduction cascades was observed by intracellular flow cytometry in long-term HSCs and FSE cells, but not in Flk(+) CD150(-) cells in response to stimulation with thrombopoietin, an important megakaryocyte-promoting cytokine. We provide a mechanistic rationale for megakaryocyte/erythroid bias within KLS Flk2(+) cells, and demonstrate how assessment of intracellular factors and signaling events can be used to refine our understanding of lineage commitment during early definitive hematopoiesis.


Asunto(s)
Factor de Transcripción GATA1/metabolismo , Células Madre Hematopoyéticas/metabolismo , Receptores de Trombopoyetina/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Citometría de Flujo , Factor de Transcripción GATA1/genética , Células Madre Hematopoyéticas/efectos de los fármacos , Interleucina-3/farmacología , Ratones , Receptores de Trombopoyetina/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Células Madre/farmacología , Trombopoyetina/farmacología
8.
Cytometry A ; 77(11): 1020-31, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20824632

RESUMEN

Intracellular flow cytometry permits quantitation of diverse molecular targets at the single-cell level. However, limitations in detection sensitivity inherently restrict the method, sometimes resulting in the inability to measure proteins of very low abundance or to differentiate cells expressing subtly different protein concentrations. To improve these measurements, an enzymatic amplification approach called tyramide signal amplification (TSA) was optimized for assessment of intracellular kinase cascades. First, Pacific Blue, Pacific Orange, and Alexa Fluor 488 tyramide reporters were shown to exhibit low nonspecific binding in permeabilized cells. Next, the effects of antibody concentration, tyramide concentration, and reaction time on assay resolution were characterized. Use of optimized TSA resulted in a 10-fold or greater improvement in measurement resolution of endogenous Erk and Stat cell signaling pathways relative to standard, nonamplified detection. TSA also enhanced assay sensitivity and, in conjunction with fluorescent cell barcoding, improved assay performance according to a metric used to evaluate high-throughput drug screens. TSA was used to profile Stat1 phosphorylation in primary immune system cells, which revealed heterogeneity in various populations, including CD4+ FoxP3+ regulatory T cells. We anticipate the approach will be broadly applicable to intracellular flow cytometry assays with low signal-to-noise ratios.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Citometría de Flujo/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Tiramina/química , Animales , Línea Celular Tumoral , Separación Celular , Quinasas MAP Reguladas por Señal Extracelular/análisis , Femenino , Humanos , Interferón gamma/farmacología , Interleucina-6/farmacología , Células Jurkat , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Límite de Detección , Linfoma/tratamiento farmacológico , Linfoma/metabolismo , Ratones , Ratones Endogámicos BALB C , Fosfoproteínas , Fosforilación , Unión Proteica , Bazo/citología , Bazo/efectos de los fármacos , Bazo/metabolismo , Coloración y Etiquetado/métodos , Tiramina/análisis , Células U937
10.
Blood ; 113(22): 5476-9, 2009 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19299331

RESUMEN

Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage.


Asunto(s)
Células Sanguíneas/citología , Desdiferenciación Celular , Proliferación Celular , Células Madre Pluripotentes/citología , Adulto , Antígenos CD34/metabolismo , Células Sanguíneas/metabolismo , Técnicas de Cultivo de Célula , Desdiferenciación Celular/fisiología , Células Cultivadas , Humanos , Factor 4 Similar a Kruppel , Masculino , Modelos Biológicos , Células Madre Pluripotentes/metabolismo
11.
PLoS Genet ; 1(3): e28, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16151515

RESUMEN

The hematopoietic system is an invaluable model both for understanding basic developmental biology and for developing clinically relevant cell therapies. Using highly purified cells and rigorous microarray analysis we have compared the expression pattern of three of the most primitive hematopoietic subpopulations in adult mouse bone marrow: long-term hematopoietic stem cells (HSC), short-term HSC, and multipotent progenitors. All three populations are capable of differentiating into a spectrum of mature blood cells, but differ in their self-renewal and proliferative capacity. We identified numerous novel potential regulators of HSC self-renewal and proliferation that were differentially expressed between these closely related cell populations. Many of the differentially expressed transcripts fit into pathways and protein complexes not previously identified in HSC, providing evidence for new HSC regulatory units. Extending these observations to the protein level, we demonstrate expression of several of the corresponding proteins, which provide novel surface markers for HSC. We discuss the implications of our findings for HSC biology. In particular, our data suggest that cell-cell and cell-matrix interactions are major regulators of long-term HSC, and that HSC themselves play important roles in regulating their immediate microenvironment.


Asunto(s)
Regulación de la Expresión Génica , Células Madre Hematopoyéticas/fisiología , Animales , Antígenos CD/genética , Antígenos CD/fisiología , Células de la Médula Ósea/citología , Comunicación Celular , División Celular , ADN Complementario/genética , Células Madre Hematopoyéticas/citología , Humanos , Ratones , ARN/genética , ARN/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA