Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 19(43): 8349-8359, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37873654

RESUMEN

Foods vary in their elastic properties over a wide range of behaviours. In the case of mastication, textures vary from hard solid through brittle (chocolate bar) and crispy/crunchy (biscuits) to viscous and extensional flow (syrup) and finally very low viscosity fluid (water). Here we deploy an elastic description of soft solids which embraces all these behaviours to quantify the elastic behaviour of food, in particular through the use of sound. We illustrate the use of this mathematical description in the quantitative characterisation of the elastic and flow properties of food through orthodox measurement techniques and novel ultrasound methods. Measurement is complicated by human sensory capabilities that span the entire range from solid to fluid to gas in an integrated manner, during the appreciation of food. We use acoustic and rheological measurement techniques for the determination of the mechanical properties of soft solids, comparing oscillatory rheometry with acoustic parameters as exemplified by acoustic and oscillatory rheometry measurements in crystallising anhydrous milk fat (AMF). We conclude that acoustic and rheological measurements complement each other with acoustic techniques offering the possibility of inline, in process determination of mechanical and flow properties such as viscosity, rigidity, compressibility and bulk modulus.


Asunto(s)
Acústica , Leche , Humanos , Animales , Reología/métodos , Viscosidad
2.
Molecules ; 27(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36234899

RESUMEN

The remediation in plant enzymatic activities in Cd-contaminated soil was monitored through tea waste. Tea is an extensively used beverage worldwide with the release of a high quantity of tea waste utilized in the growing condition of Helianthus annuus on Cd metal contaminated soil. The study was a plan for the natural environmental condition in the greenhouse. For this purpose, four sets of plants were cultivated in triplicate and marked as (i) control, (ii) Cd stress plants, (iii) dry tea waste and Cd stress, and (iv) fresh tea waste and Cd stress. The improved efficiency of biochemical reactions in plants under Cd stress with tea waste treatment was the consequence of blocking Cd movement in the soil through adsorption on tea waste, showing that the tea waste effectively controls the mobility of Cd from the soil to the roots of the plants. Scan electron microscopy (SEM) validates the recovery of the leaves of the plants. The remediation of plant growth and enzyme activities such as amylase, peroxidase, nitrate reductase (NR), and nitrite reductase (NiR) under Cd metal-contaminated soil through tea waste was investigated. The source of tea waste in contaminated soil resulted in the recovery of the photosynthetic process and an improvement in amylase, NR, NiR, and peroxidase activities, thereby resulting in the recovery of pigments coupled with an increase in the biomass of the plants. It was suggested that tea waste acts as a good biosorbent of Cd and energy provider to the plants for normal enzyme activity under Cd stress and may be used by farmers in the future for safe and healthy crops as a cost-effective technology.


Asunto(s)
Helianthus , Contaminantes del Suelo , Amilasas , Biodegradación Ambiental , Cadmio/análisis , Productos Agrícolas , Nitrito Reductasas , Peroxidasas , Suelo , Contaminantes del Suelo/análisis ,
3.
Life (Basel) ; 12(9)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36143377

RESUMEN

Chitinases are enzymes catalyzing the hydrolysis of chitin that are present on the cell wall of fungal pathogens. Here, we identified and characterized the chitinase gene family in cultivated soybean (Glycine max L.) across the whole genome. A total of 38 chitinase genes were identified in the whole genome of soybean. Phylogenetic analysis of these chitinases classified them into five separate clusters, I-V. From a broader view, the I-V classes of chitinases are basically divided into two mega-groups (X and Y), and these two big groups have evolved independently. In addition, the chitinases were unevenly and randomly distributed in 17 of the total 20 chromosomes of soybean, and the majority of these chitinase genes contained few introns (≤2). Synteny and duplication analysis showed the major role of tandem duplication in the expansion of the chitinase gene family in soybean. Promoter analysis identified multiple cis-regulatory elements involved in the biotic and abiotic stress response in the upstream regions (1.5 kb) of chitinase genes. Furthermore, qRT-PCR analysis showed that pathogenic and drought stress treatment significantly induces the up-regulation of chitinase genes belonging to specific classes at different time intervals, which further verifies their function in the plant stress response. Hence, both in silico and qRT-PCR analysis revealed the important role of the chitinases in multiple plant defense responses. However, there is a need for extensive research efforts to elucidate the detailed function of chitinase in various plant stresses. In conclusion, our investigation is a detailed and systematic report of whole genome characterization of the chitinase family in soybean.

4.
Microorganisms ; 10(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35630398

RESUMEN

The demand of functional foods is on the rise, and researchers are trying to develop nutritious dairy products by using well-characterized strains of bacteria. In this study, we identified locally isolated strains of Lactobacillus fermentum from Bubalus bubalis (Nilli Ravi buffalo) milk and evaluated their potential as probiotics in food products like fermented milk. Fifteen Lactobacillus strains were initially isolated, and only four strains (NMCC-2, NMCC-14, NMCC-17, and NMCC-27) were examined for morphological and biochemical characterizations due to their ability of gas production in Durham tubes. Moreover, these strains were selected for further probiotic characterizations due to their extreme morphological resemblance with lactic acid bacteria for their antimicrobial activity, enzymatic potential, autoaggregation capability, hydrophobicity, and acid and bile tolerance. All selected isolates showed significant probiotic potential. However, NMCC-14 and NMCC-17 strains showed maximum probiotic potential. The isolates (NMCC-2, NMCC-14, NMCC-17, and NMCC-27) were identified as Lactobacillus fermentum utilizing 16S rRNA gene sequencing. The in vivo safety study of NMCC-14 (dose: 1010 CFU/day/mice; 21 days, orally) showed no histological dysfunctions in a mouse model. Pathogenic bacterial enzymes reduced the beneficial bacterial load in the host gastrointestinal tract. These results suggest that the NMCC-14 strain is safe and can be potentially used as a probiotic. Moreover, fermented milk was prepared by using the NMCC-14 strain. The results revealed that NMCC-14 strain-based fermented milk had significantly (p < 0.05) higher protein content (4.4 ± 0.06), water-holding capacity (WHC), and dynamic viscosity as compared to non-fermented milk. The results suggest that L. fermentum NMCC-14 is safe and nontoxic; hence, it can be a beneficial supplement to be used for the development of dairy products to be subjected to further clinical testing.

5.
PLoS One ; 17(5): e0263289, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35613105

RESUMEN

This research was carried out to evaluate the effect of biochar and compost application on Spinacia oleracea growth in cadmium contaminated soil. Cd toxicity decreased plant growth and biomass significantly and also negatively affected the physiological and biochemical attributes of plants. However, the application of biochar and compost improved the contaminated soil by reducing Cd toxicity and causing its immobilization, which in turn improved plant growth. The combined application of biochar and compost significantly (p < 0.05) enhanced biomass and photosynthetic pigments development in plants. The treatments also increased membrane stability index by 45.12% and enhanced water using efficiency by 218.22%, respectively. The increase in antioxidant activities was 76.03%, 29.02%, and 123.27% in superoxide dismutase, peroxidase, and catalase, respectively. The combined application also reduced the cadmium content (reduced 40.14% in root and 51.16% shoot), its translocation (19.67% decrease), and bioaccumulation (52.63% and 40.32% decrease in Cd content in shoot and root, respectively) in spinach plant. Among the two selected varieties of S. oleracea, Desi palak (V1) performed better as compared to Kanta palak (V2). It can be concluded that the combined application of biochar and compost is one of the best strategies to reduce the toxicity level of Cd in plants and to improve their growth.


Asunto(s)
Compostaje , Contaminantes del Suelo , Cadmio/análisis , Carbón Orgánico/química , Suelo/química , Contaminantes del Suelo/análisis , Spinacia oleracea/química
6.
Front Genet ; 13: 750814, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35391791

RESUMEN

Throughout the ages, the common bean has been consumed by humanity as an important food staple crop and source of nutrition on a global scale. Since its domestication, a wide spectrum of phenotypic and genotypic investigations have been carried out to unravel the potential of this crop and to understand the process of nutrient accumulation along with other desirable characteristics. The common bean is one of the essential legume crops due to its high protein and micronutrient content. The balance in micronutrients is critical for the growth and development of plants as well as humans. Iron (Fe), Zinc (Zn), Copper (Cu), Manganese (Mn), Magnesium (Mg), Calcium (Ca), and Molybdenum (Mo) are some of the important micronutrients present in legumes. Thus, we aimed to investigate the quantitative trait loci's (QTLs)/single nucleotide polymorphisms (SNPs) to identify the candidate genes associated with micronutrients through genotyping by sequencing (GBS). In our investigation, through GBS we identified SNPs linked with traits and assessed seven micronutrients in 96 selected common bean genotypes for screening nutritionally rich genotypes. Among 96399 SNPs total identified through GBS, 113 SNPs showed significant phenotypic variance, ranging from 13.50 to 21.74%. SNPs associated with most of the seed micronutrients (Mg, Mn, Fe, Ca, Cu) were found on chr3 & chr11 (Mg, Mn, Mo, Ca, Zn). The findings from this study could be used for haplotype-based selection of nutritionally rich genotypes and for marker-assisted genetic enhancement of the common bean. Further, the identified SNPs for candidate genes/transporters associated with micronutrient content may pave the way for the enrichment of seeds by employing genomics-assisted breeding programs.

7.
Environ Pollut ; 298: 118828, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35031406

RESUMEN

The carcinogenic attribute of arsenic (As) has turned the world to focus more on the decontamination and declining the present level of As from the environment especially from the soil and water bodies. Phytoremediation has achieved a status of sustainable and eco-friendly approach of decontaminating pollutants, and in the present study, an attempt has been made to reveal the potential of As remediation by a halophyte plant, Acanthus ilicifolius L. Special attention has given to analyse the morphological, physiological and anatomical modulations in A. ilicifolius, developed in response to altering concentrations of Na2AsO4.7H2O (0, 70, 80 and 90 µM). Growth of A. ilicifolius under As treatments were diminished as assessed from the reduction in leaf area, root length, dry matter accumulation, and tissue water status. However, the plants exhibited a comparatively higher tolerance index (44%) even when grown in the higher concentrations of As (90 µM). Arsenic treatment induced reduction in the photochemical activities as revealed by the pigment content, chlorophyll stability index (CSI) and Chlorophyll a fluorescence parameter. Interestingly, the thickness and diameter of the xylem walls in the leaf as well as root tissues of As treated samples increased upon increasing the As concentration. The adaptive strategies exhibited by A. ilicifolius towards varying concentrations of As is the result of coordinated responses of morpho-physiological and anatomical attributes, which make the plant a promising candidate for As remediation, especially in wetlands.


Asunto(s)
Acanthaceae , Arsénico , Contaminantes del Suelo , Biodegradación Ambiental , Clorofila A
8.
Chemosphere ; 290: 133327, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34929274

RESUMEN

The present investigation was committed to examining the effect of soil spiked with diesel contamination (0, 1.5, 2.5, 3.5 g diesel kg-1 soil) on maize (Zea mays L) varieties (MMRI yellow and Pearl white) with or without bacterial consortium (Pseudomonas aeruginosa BRRI54, Acinetobacter sp. strain BRSI56, Acinetobacter sp. strain ACRH80). Seed and soil bacterial inoculation were done. The studied morphological attributes were fresh and dry weight of shoot and root of both maize varieties. The results documented that bacterial consortium caused 21%, 0.06% and 29%, 34% higher shoot and root fresh/dry weights in "Pearl white" and 14%, 15% and 32%, 22% shoot and root fresh/dry weights respectively in MMRI yellow under control conditions. The biochemical attributes of shoot and root were affected negatively by the 3.5 g diesel kg-1 soil contamination. Bacterial consortium enhanced enzymatic activity (APX, CAT, POD, SOD, GR) and non-enzymatic (AsA, GSH, Pro, α-Toco) antioxidant and reduction in oxidative stress (H2O2, MDA) under hydrocarbon stress as compared to non-inoculated ones in both root and shoot organs. Among both varieties, the highest hydrocarbon removal (75, 64, and 69%) was demonstrated by MMRI yellow with bacterial consortium as compare to Pearl white showed 73, 57, 65% hydrocarbon degradation at 1.5 2.5, 3.5 g diesel kg-1 soil contamination. Consequently, the microbe mediated biotransformation of hydrocarbons suggested that the use of PGPB would be the most beneficial selection in diesel fuel contaminated soil to overcome the abiotic stress in plants and successfully remediation of hydrocarbon in contaminated soil.


Asunto(s)
Contaminantes del Suelo , Zea mays , Biodegradación Ambiental , Hidrocarburos , Peróxido de Hidrógeno , Raíces de Plantas/química , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
9.
J Fungi (Basel) ; 7(11)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34829212

RESUMEN

The large genetic evolution due to the sexual reproduction-mediated gene assortments and propensities has made Venturia inaequalis (causing apple scab) unique with respect to its management strategies. The resistance in apple germplasm against the scab, being controlled for by more than fifteen genes, has limited gene alteration-based investigations. Therefore, a biological approach of bacterial endophyte community dynamics was envisioned across the apple germplasm in context to the fungistatic behavior against V. inaequalis. A total of 155 colonies of bacterial endophytes were isolated from various plant parts of the apple, comprising 19 varieties, and after screening for antifungal behavior followed by morphological, ARDRA, and sequence analysis, a total of 71 isolates were selected for this study. The alpha diversity indices were seen to fluctuate greatly among the isolation samples in context to microflora with antifungal behavior. As all the isolates were screened for the presence of various metabolites and some relevant genes that directly or indirectly influence the fungistatic behavior of the isolated microflora, a huge variation among the isolated microflora was observed. The outstanding isolates showing highest percentage growth inhibition of V. inaequalis were exploited to raise a bio-formulation, which was tested against the scab prevalence in eight apple varieties under controlled growth conditions. The formulation at all the concentrations caused considerable reductions in both the disease severity and disease incidence in all the tested apple varieties. Red Delicious being most important cultivar of the northwestern Himalayas was further investigated for its biochemical behavior in formulation and the investigation revealed different levels of enzyme production, chlorophyll, and sugars against the non-inoculated control.

10.
Plants (Basel) ; 10(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34834826

RESUMEN

Salt stress is one of the major constraints affecting plant growth and agricultural productivity worldwide. Sorghum is a valuable food source and a potential model for studying and better understanding the salt stress mechanics in the cereals and obtaining a more comprehensive knowledge of their cellular responses. Herein, we examined the effects of salinity on reserve mobilization, antioxidant potential, and expression analysis of starch synthesis genes. Our findings show that germination percentage is adversely affected by all salinity levels, more remarkably at 120 mM (36% reduction) and 140 mM NaCl (46% reduction) than in the control. Lipid peroxidation increased in salt-susceptible genotypes (PC-5: 2.88 and CSV 44F: 2.93 nmloe/g.FW), but not in tolerant genotypes. SSG 59-3 increased activities of α-amylase, and protease enzymes corroborated decreased starch and protein content, respectively. SSG 59-3 alleviated adverse effects of salinity by suppressing oxidative stress (H2O2) and stimulating enzymatic and non-enzymatic antioxidant activities (SOD, APX, CAT, POD, GR, and GPX), as well as protecting cell membrane integrity (MDA, electrolyte leakage). A significant increase (p ≤ 0.05) was also observed in SSG 59-3 with proline, ascorbic acid, and total carbohydrates. Among inorganic cations and anions, Na+, Cl-, and SO42- increased, whereas K+, Mg2+, and Ca2+ decreased significantly. SSG 59-3 had a less pronounced effect of excess Na+ ions on the gene expression of starch synthesis. Salinity also influenced Na+ ion efflux and maintained a lower cytosolic Na+/K+ ratio via concomitant upregulation of SbNHX-1 and SbVPPase-I ion transporter genes. Thus, we have highlighted that salinity physiologically and biochemically affect sorghum seedling growth. Based on these findings, we highlighted that SSG 59-3 performed better by retaining higher plant water status, antioxidant potential, and upregulation of ion transporter genes and starch synthesis, thereby alleviating stress, which may be augmented as genetic resources to establish sorghum cultivars with improved quality in saline soils.

11.
Plant Physiol Biochem ; 167: 884-900, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34537578

RESUMEN

It was aimed to examine the role of gibberellic acid (GA3) and NPK fertilizer in alleviating boron (B) toxicity in coriander (Coriandrum sativum L.) plants. Two weeks old C. sativum seedlings were subjected to different NPK fertilizers [low NPK (30 kg ha-1) and normal NPK (60 kg ha-1)], which were also supplied by GA3 (50 mg L-1), under varying levels of B i.e., 0, 200 and 400 mg kg-1 in the soil. Results revealed that B toxicity led to a substantial decreased in the plant growth and biomass, photosynthetic pigments, gas exchange characteristics, sugars and essential nutrients in the roots and shoots of C. sativum seedlings. However, B toxicity boosted the production of reactive oxygen species (ROS) by increasing the contents of malondialdehyde (MDA), which is the indication of oxidative stress in C. sativum seedlings and was also manifested by hydrogen peroxide (H2O2) contents and electrolyte leakage (EL) to the membrane bounded organelles. Although, activities of various antioxidative enzymes like superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), non-enzymatic antioxidants like phenolic, flavonoid, ascorbic acid and anthocyanin contents and organic acids from the roots such as oxalic acid, malic acid, formic acid, citric acid, acetic acid and fumaric acid contents were increased with the increasing levels of B in the soil. The application if NPK and GA3 mitigated B toxicity by stimulated plant growth and biomass, photosynthetic efficiency, nutritional status and antioxidant machinery of the plant by decreasing MDA contents, H2O2 initiation and EL (%) in the roots and leaves of C. sativum seedlings. In addition, the application of NPK and GA3 further decreased the organic acids exudation contents in the roots C. sativum seedlings. Research findings, therefore, suggested that NPK and GA3 application can ameliorate B toxicity in C. sativum seedlings and resulted in improved plant growth and composition under B stress as depicted by balanced contents of organic acids.


Asunto(s)
Coriandrum , Contaminantes del Suelo , Antioxidantes , Boro , Giberelinas , Peróxido de Hidrógeno , Malondialdehído , Estrés Oxidativo , Plantones/química , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
12.
Saudi J Biol Sci ; 28(10): 5526-5537, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34588862

RESUMEN

Superoxide Dismutase SODs are defense associated proteins that detoxify ROS and primarily serve as scavengers. They have been described in numerous plant species, but their in-depth characterization in Brassica rapa has not been reported. Therefore, the present investigation on genome wide study of SOD gene family was conducted to identify BrSOD genes, their domain-based organization, gene structure analysis, phylogenetic analysis, intron-exon structure of genes and expression analysis. The sequence characterization of Super oxide dismutase gene family in Brassica rapa, their syntenic associateship of conserved motifs and phylogenetic correlationship, prediction of cis-elements and determing the expression analysis in distinct tissues namely plant callus, root, stem, leaf, flower, and silique under abiotic conditions have been analysed using different software's. The study on SOD gene family identified 17 BrSOD genes which were grouped into eight BrCu-ZnSODs and nine BrFe-MnSODs domain-based organization. Furthermore, the conserved character of BrSODs were confirmed by intron-exon organisation, motif arrangements and domain architectural investigations. Expression analysis using RNA Sequence data of different developmental stages proclaimed that genes were manifested in all six tissues with an exception of BrCu-ZnSOD3, which was not manifested in roots; however, whose transcript was detected in all other tested tissues. The study has genome wide insight into the occurrence and functional specifications of BrSOD gene family in Brassica rapa that can be potentially utilized in breeding program for resilience to climate change and abiotic stresses tolerance Brassica variety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...