Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genetics ; 214(1): 179-191, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31754017

RESUMEN

Sequences encoding Olduvai protein domains (formerly DUF1220) show the greatest human lineage-specific increase in copy number of any coding region in the genome and have been associated, in a dosage-dependent manner, with brain size, cognitive aptitude, autism, and schizophrenia. Tandem intragenic duplications of a three-domain block, termed the Olduvai triplet, in four NBPF genes in the chromosomal 1q21.1-0.2 region, are primarily responsible for the striking human-specific copy number increase. Interestingly, most of the Olduvai triplets are adjacent to, and transcriptionally coregulated with, three human-specific NOTCH2NL genes that have been shown to promote cortical neurogenesis. Until now, the underlying genomic events that drove the Olduvai hyperamplification in humans have remained unexplained. Here, we show that the presence or absence of an alternative first exon of the Olduvai triplet perfectly discriminates between amplified (58/58) and unamplified (0/12) triplets. We provide sequence and breakpoint analyses that suggest the alternative exon was produced by an nonallelic homologous recombination-based mechanism involving the duplicative transposition of an existing Olduvai exon found in the CON3 domain, which typically occurs at the C-terminal end of NBPF genes. We also provide suggestive in vitro evidence that the alternative exon may promote instability through a putative G-quadraplex (pG4)-based mechanism. Lastly, we use single-molecule optical mapping to characterize the intragenic structural variation observed in NBPF genes in 154 unrelated individuals and 52 related individuals from 16 families and show that the presence of pG4-containing Olduvai triplets is strongly correlated with high levels of Olduvai copy number variation. These results suggest that the same driver of genomic instability that allowed the evolutionarily recent, rapid, and extreme human-specific Olduvai expansion remains highly active in the human genome.


Asunto(s)
Proteínas Portadoras/genética , Genoma Humano , Expansión de Repetición de Trinucleótido , Animales , Secuencia de Bases , Variaciones en el Número de Copia de ADN , Evolución Molecular , G-Cuádruplex , Amplificación de Genes , Dosificación de Gen , Inestabilidad Genómica , Recombinación Homóloga , Humanos , Primates , Dominios Proteicos , Homología de Secuencia
2.
Am J Psychiatry ; 176(8): 643-650, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30764650

RESUMEN

OBJECTIVE: The authors previously reported that the copy number of sequences encoding an Olduvai protein domain subtype (CON1) shows a linear association with the severity of social deficits and communication impairment in individuals with autism. In this study, using an improved measurement method, the authors replicated this association in an independent population. METHOD: The authors obtained whole genome sequence (WGS) data and phenotype data on 215 individuals from the Autism Speaks MSSNG project. They derived copy number from WGS data using a modified sequence read-depth technique. A linear mixed-effects model was used to test the association between Olduvai CON1 copy number and symptom severity as measured by the Autism Diagnostic Interview-Revised. The authors then combined data from previous studies (N=524) for final analyses. RESULTS: A significant linear association was observed between CON1 copy number and social diagnostic score (SDS) (ß=0.24) and communicative diagnostic score (CDS) (ß=0.23). Using the combined data, the authors present strong significant associations of CON1 dosage with SDS (ß=0.18) and CDS (ß=0.13). The authors also implicate Olduvai subtypes found in two genes, NBPF1 and NBPF14 (R2=6.2%). Associations were preferentially found in multiplex versus simplex families. CONCLUSIONS: The finding of a third dose-dependent association between Olduvai sequences and autism severity, preferentially in multiplex families, provides strong evidence that this highly duplicated and underexamined protein domain family plays an important role in inherited autism.


Asunto(s)
Trastorno Autístico/genética , Variaciones en el Número de Copia de ADN/genética , Dominios Proteicos/genética , Trastorno Autístico/psicología , Proteínas Portadoras/genética , Niño , Femenino , Estudios de Asociación Genética , Genoma Humano , Humanos , Masculino
3.
BMC Genomics ; 18(1): 614, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28807002

RESUMEN

BACKGROUND: DUF1220 protein domains found primarily in Neuroblastoma BreakPoint Family (NBPF) genes show the greatest human lineage-specific increase in copy number of any coding region in the genome. There are 302 haploid copies of DUF1220 in hg38 (~160 of which are human-specific) and the majority of these can be divided into 6 different subtypes (referred to as clades). Copy number changes of specific DUF1220 clades have been associated in a dose-dependent manner with brain size variation (both evolutionarily and within the human population), cognitive aptitude, autism severity, and schizophrenia severity. However, no published methods can directly measure copies of DUF1220 with high accuracy and no method can distinguish between domains within a clade. RESULTS: Here we describe a novel method for measuring copies of DUF1220 domains and the NBPF genes in which they are found from whole genome sequence data. We have characterized the effect that various sequencing and alignment parameters and strategies have on the accuracy and precision of the method and defined the parameters that lead to optimal DUF1220 copy number measurement and resolution. We show that copy number estimates obtained using our read depth approach are highly correlated with those generated by ddPCR for three representative DUF1220 clades. By simulation, we demonstrate that our method provides sufficient resolution to analyze DUF1220 copy number variation at three levels: (1) DUF1220 clade copy number within individual genes and groups of genes (gene-specific clade groups) (2) genome wide DUF1220 clade copies and (3) gene copy number for DUF1220-encoding genes. CONCLUSIONS: To our knowledge, this is the first method to accurately measure copies of all six DUF1220 clades and the first method to provide gene specific resolution of these clades. This allows one to discriminate among the ~300 haploid human DUF1220 copies to an extent not possible with any other method. The result is a greatly enhanced capability to analyze the role that these sequences play in human variation and disease.


Asunto(s)
Dosificación de Gen/genética , Genómica , Proteínas de Neoplasias/genética , Evolución Molecular , Genoma Humano/genética , Genética Humana , Humanos , Proteínas de Neoplasias/química , Dominios Proteicos , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA