Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 116(6): 1533-1551, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34784078

RESUMEN

The SGI1-family elements that are specifically mobilized by the IncA- and IncC-family plasmids are important vehicles of antibiotic resistance among enteric bacteria. Although SGI1 exploits many plasmid-derived conjugation and regulatory functions, the basic mobilization module of the island is unrelated to that of IncC plasmids. This module contains the oriT and encodes the mobilization proteins MpsA and MpsB, which belong to the tyrosine recombinases and not to relaxases. Here we report an additional, essential transfer factor of SGI1. This is a small RNA deriving from the 3'-end of a primary RNA that can also serve as mRNA of ORF S022. The functional domain of this sRNA named sgm-sRNA is encoded between the mpsA gene and the oriT of SGI1. Terminator-like sequence near the promoter of the primary transcript possibly has a regulatory function in controlling the amount of full-length primary RNA, which is converted to the active sgm-sRNA through consecutive maturation steps influenced by the 5'-end of the primary RNA. The mobilization module of SGI1 seems unique due to its atypical relaxase and the newly identified sgm-sRNA, which is required for the horizontal transfer of the island but appears to act differently from classical regulatory sRNAs.


Asunto(s)
Transferencia de Gen Horizontal , Islas Genómicas , ARN Bacteriano/genética , Salmonella/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Conjugación Genética , Farmacorresistencia Bacteriana Múltiple , Plásmidos/genética , Plásmidos/metabolismo , ARN Bacteriano/metabolismo , Salmonella/metabolismo
2.
Microorganisms ; 9(9)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34576692

RESUMEN

Bacterial communities can promote increased phosphorus (P) availability for plants and microbes in soil via various mechanisms of phosphate solubilization. The production of extracellular phosphatases releases available P through the hydrolysis of organic P. Examining the abundance and diversity of the bacterial community, including phosphate solubilizing bacteria in soil, may provide valuable information to overcome P scarcity in soil ecosystems. Here, the diversity and relative abundance of bacterial phyla and genera of six agricultural soil samples from Vietnam were analysed by next generation sequencing of the 16S rRNA gene. Phosphatase activities of each soil were compared with physico-chemical parameters and the abundance of the alkaline phosphatase gene phoD. We showed the dominance of Chloroflexi, Proteobacteria, Actinobacteria, Acidobacteria and Firmicutes. Total nitrogen positively correlated with phyla Proteobacteria, Acidobacteria, Firmicutes and Planctomycetes. The abundance of several genera of Proteobacteria showed positive relationship with the copy number of the phoD gene. The abundance of several taxa positively correlated with silt content, while a negative relationship of Proteobacteria was found with sand content. Our results demonstrated the clear influence of soil physico-chemical properties on the abundance of various bacterial taxa including those potentially involved in phosphate solubilization.

3.
Front Plant Sci ; 11: 684, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670307

RESUMEN

In the present study, we conducted field surveys to detect the population density of the most important invasive weed species and their associated virus vectoring aphids in crops grown under high input field (HIF) vs. low-input field (LIF) conditions, with and without fertilizers and pesticides. The most frequent invasive weed species were annual fleabane, Erigeron annua (L.), Canadian horseweed, Erigeron canadensis (L.) and Canadian goldenrod, Solidago canadensis (L.). These species were predominantly hosts of the aphids Brachycaudus helichrysi and Aulacorthum solani under both management systems. The 13% higher coverage of E. annua under LIF conditions resulted in a 30% higher B. helichrysi abundance and ∼85% higher A. solani abundance compared with HIF conditions. To reveal the incidence of virus infection in crop plants and invasive weeds, high-throughput sequencing of small RNAs was performed. Bioinformatics analysis combined with independent validation methods revealed the presence of six viruses, but with strikingly different patterns under LIF and HIF conditions. Their presence without symptoms in invasive weeds and crop plants supports the necessity of employing new approaches to those currently employed in invasive weed management. These findings also suggest that invasive weeds could serve as hosts for local aphid species and reservoirs for plant pathogenic viruses, both under low and high input management systems. In this light, as here demonstrated, viruses transmitted by local aphid species were found to differ between the management systems; hence, the importance of B. helichrysi and A. solani as virus vectors in particular clearly needs to be re-evaluated. Altogether, we accept that the present study is a pilot one and individual virus vectoring of aphids still needs to be directly tested. Even so, it represents one of the first contributions to this particular area, and thereby paves the way for further similar applied research in the future.

4.
Front Microbiol ; 10: 457, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30894848

RESUMEN

The integrative mobilizable elements of SGI1-family considerably contribute to the spread of resistance to critically important antibiotics among enteric bacteria. Even though many aspects of SGI1 mobilization by IncA and IncC plasmids have been explored, the basic transfer elements such as oriT and self-encoded mobilization proteins remain undiscovered. Here we describe the mobilization region of SGI1 that is well conserved throughout the family and carries the oriT SGI1 and two genes, mpsA and mpsB (originally annotated as S020 and S019, respectively) that are essential for the conjugative transfer of SGI1. OriT SGI1, which is located in the vicinity of the two mobilization genes proved to be a 125-bp GC-rich sequence with several important inverted repeat motifs. The mobilization proteins MpsA and MpsB are expressed from a bicistronic mRNA, although MpsB can be produced from its own mRNA as well. The protein structure predictions imply that MpsA belongs to the lambda tyrosine recombinase family, while MpsB resembles the N-terminal core DNA binding domains of these enzymes. The results suggest that MpsA may act as an atypical relaxase, which needs MpsB for SGI1 transfer. Although the helper plasmid-encoded relaxase proved not to be essential for SGI1 transfer, it appeared to be important to achieve the high transfer rate of the island observed with the IncA/IncC-SGI1 system.

5.
Sci Rep ; 7(1): 10595, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878309

RESUMEN

Dissemination of multiresistance has been accelerating among pathogenic bacteria in recent decades. The broad host-range conjugative plasmids of the IncA/C family are effective vehicles of resistance determinants in Gram-negative bacteria. Although more than 150 family members have been sequenced to date, their conjugation system and other functions encoded by the conserved plasmid backbone have been poorly characterized. The key cis-acting locus, the origin of transfer (oriT), has not yet been unambiguously identified. We present evidence that IncA/C plasmids have a single oriT locus immediately upstream of the mobI gene encoding an indispensable transfer factor. The fully active oriT spans ca. 150-bp AT-rich region overlapping the promoters of mobI and contains multiple inverted and direct repeats. Within this region, the core domain of oriT with reduced but detectable transfer activity was confined to a 70-bp segment containing two inverted repeats and one copy of a 14-bp direct repeat. In addition to oriT, a second locus consisting of a 14-bp imperfect inverted repeat was also identified, which mimicked the function of oriT but which was found to be a recombination site. Recombination between two identical copies of these sites is RecA-independent, requires a plasmid-encoded recombinase and resembles the functioning of dimer-resolution systems.


Asunto(s)
Plásmidos/genética , Recombinación Genética , Biología Computacional , Conjugación Genética , Evolución Molecular , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Genes Bacterianos , Familia de Multigenes , Mutación , Regiones Promotoras Genéticas
6.
Antimicrob Agents Chemother ; 60(11): 6780-6786, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27600047

RESUMEN

Two A/C incompatibility group (IncA/C family) plasmids from the 1960s have been sequenced and classified into the A/C2 type 1 group. R16a and IP40a contain novel antibiotic resistance islands and a complete GIsul2 genomic island not previously found in the family. In the 173.1-kb R16a, the 29.9-kb antibiotic resistance island (ARI) is located in a unique backbone position not utilized by ARIs. ARIR16a consists of Tn1, Tn6020, and Tn6333, harboring the resistance genes blaTEM-1D and aphA1b and a mer module, respectively; a truncated Tn5393 copy; and a gene cluster with unknown function. Plasmid IP40a is 170.4 kb in size and contains a 5.6-kb ARI inserted into the kfrA gene. ARIIP40a carrying blaTEM-1D and aphA1b genes is composed of Tn1 with a Tn6023 insertion. Additionally, IP40a harbors single IS2, IS186, and Tn1000 insertions scattered in the backbone; an IS150 copy in GIsul2; and a complete Tn6333 carrying a mer module at the position of ARIR16a Loss of resistance markers in R16a, IP40a, and R55 was observed during stability tests. Every phenotypic change proved to be the result of recombination events involving mobile elements. Intramolecular transposition of IS copies that generated IP40a derivatives lacking large parts of the backbone could account for the formation of other family members, too. The MinION platform proved to be a valuable tool in bacterial genome sequencing since it generates long reads that span repetitive elements and facilitates full-length plasmid or chromosome assembly. Nanopore technology enables rapid characterization of large, low-copy-number plasmids and their rearrangement products.


Asunto(s)
ADN Bacteriano/genética , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Genoma Bacteriano , Plásmidos/química , Plásmidos/historia , beta-Lactamasas/genética , Antibacterianos/farmacología , Automatización de Laboratorios , Conjugación Genética , Elementos Transponibles de ADN , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Islas Genómicas , Historia del Siglo XX , Plásmidos/metabolismo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA