Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Invest Ophthalmol Vis Sci ; 64(5): 17, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37204785

RESUMEN

Purpose: Plasmalogens (Plgs) are highly abundant lipids in the retina, and their deficiency leads to severe abnormalities during eye development. The first acylation step in the synthesis of Plgs is catalyzed by the enzyme glyceronephosphate O-acyltransferase (GNPAT), which is also known as dihydroxyacetone phosphate-acyltransferase (EC 2.3.1.42). GNPAT deficiency produces rhizomelic chondrodysplasia punctata type 2, a genetic disorder associated with developmental ocular defects. Despite the relevance of retinal Plgs, our knowledge of the mechanisms that regulate their synthesis, and the role of GNPAT during eye development is limited. Methods: Using the Xenopus laevis model organism, we characterized by in situ hybridization the expression pattern of gnpat and compared it to glycerol 3-phosphate acyltransferase mitochondrial (gpam or gpat1) during eye neurogenesis, lamination, and morphogenesis. The Xenopus Gnpat was biochemically characterized in a heterologous expression system in yeast. Results: During development, gnpat is expressed in proliferative cells of the retina and lens, and post-embryogenesis in proliferative cells of the ciliary marginal zone and lens epithelium. In contrast, gpam expression is mainly restricted to photoreceptors. Xenopus Gnpat expressed in yeast is present in both soluble and membrane fractions, but only the membrane-bound enzyme displays activity. The amino terminal of Gnpat, conserved in humans, shows lipid binding capacity that is enhanced by phosphatidic acid. Conclusions: Enzymes involved in the Plgs and glycerophospholipid biosynthetic pathways are differentially expressed during eye morphogenesis. The gnpat expression pattern and the molecular determinants regulating Gnpat activity advance our knowledge of this enzyme, contributing to our understanding of the retinal pathophysiology associated with GNPAT deficiency.


Asunto(s)
Aciltransferasas , Plasmalógenos , Proteínas de Xenopus , Animales , Humanos , Aciltransferasas/genética , Aciltransferasas/metabolismo , Plasmalógenos/metabolismo , Saccharomyces cerevisiae/metabolismo , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
2.
Neuroscience ; 434: 66-82, 2020 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32200077

RESUMEN

During neural network development, growing axons read a map of guidance cues expressed in the surrounding tissue that lead the axons toward their targets. In particular, Xenopus retinal ganglion axons use the cues Slit1 and Semaphorin 3a (Sema3a) at a key guidance decision point in the mid-diencephalon in order to continue on to their midbrain target, the optic tectum. The mechanisms that control the expression of these cues, however, are poorly understood. Extrinsic Fibroblast Growth Factor (Fgf) signals are known to help coordinate the development of the brain by regulating gene expression. Here, we propose Lhx2/9 and Etv1 as potential downstream effectors of Fgf signalling to regulate slit1 and sema3a expression in the Xenopus forebrain. We find that lhx2/9 and etv1 mRNAs are expressed complementary to and within slit1/sema3a expression domains, respectively. Our data indicate that Lhx2 functions as an indirect repressor in that lhx2 overexpression within the forebrain downregulates the mRNA expression of both guidance genes, and in vitro lhx2/9 overexpression decreases the activity of slit1 and sema3a promoters. The Lhx2-VP16 constitutive activator fusion reduces sema3a promoter function, and the Lhx2-En constitutive repressor fusion increases slit1 induction. In contrast, etv1 gain of function transactivates both guidance genes in vitro and in the forebrain. Based on these data, together with our previous work, we hypothesize that Fgf signalling promotes both slit1 and sema3a expression in the forebrain through Etv1, while using Lhx2/9 to limit the extent of expression, thereby establishing the proper boundaries of guidance cue expression.


Asunto(s)
Semaforina-3A , Factores de Transcripción , Animales , Axones , Proteínas con Homeodominio LIM , Proteínas del Tejido Nervioso/genética , Semaforina-3A/genética , Factores de Transcripción/genética , Proteínas de Xenopus/genética , Xenopus laevis
3.
eNeuro ; 6(2)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30993182

RESUMEN

During development the axons of neurons grow toward and locate their synaptic partners to form functional neural circuits. Axons do so by reading a map of guidance cues expressed by surrounding tissues. Guidance cues are expressed at a precise space and time, but how guidance cue expression is regulated, and in a coordinated manner, is poorly understood. Semaphorins (Semas) and Slits are families of molecular ligands that guide axons. We showed previously that fibroblast growth factor (Fgf) signaling maintains sema3a and slit1 forebrain expression in Xenopus laevis, and these two repellents cooperate to guide retinal ganglion cell (RGC) axons away from the mid-diencephalon and on towards the optic tectum. Here, we investigate whether there are common features of the regulatory pathways that control the expression of these two guidance cues at this single axon guidance decision point. We isolated the sema3a proximal promoter and confirmed its responsiveness to Fgf signaling. Through misexpression of truncated Fgf receptors (Fgfrs), we found that sema3a forebrain expression is dependent on Fgfr2-4 but not Fgfr1. This is in contrast to slit1, whose expression we showed previously depends on Fgfr1 but not Fgfr2-4. Using pharmacological inhibitors and misexpression of constitutively active (CA) and dominant negative (DN) signaling intermediates, we find that while distinct Fgfrs regulate these two guidance genes, intracellular signaling downstream of Fgfrs appears to converge along the phosphoinositol 3-kinase (PI3K)-Akt signaling pathway. A common PI3K-Akt signaling pathway may allow for the coordinated expression of guidance cues that cooperate to direct axons at a guidance choice point.


Asunto(s)
Orientación del Axón/genética , Regulación del Desarrollo de la Expresión Génica/genética , Prosencéfalo/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Células Ganglionares de la Retina/metabolismo , Semaforina-3A/genética , Transducción de Señal/fisiología , Proteínas de Xenopus/metabolismo , Animales , Femenino , Sistema de Señalización de MAP Quinasas/fisiología , Oocitos , Fosfatidilinositol 3-Quinasas/metabolismo , Isoformas de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Xenopus laevis
4.
Cell Mol Life Sci ; 75(19): 3649-3661, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29705951

RESUMEN

Axons sense molecular cues in their environment to arrive at their post-synaptic targets. While many of the molecular cues have been identified, the mechanisms that regulate their spatiotemporal expression remain elusive. We examined here the transcriptional regulation of the guidance gene slit1 both in vitro and in vivo by specific fibroblast growth factor receptors (Fgfrs). We identified an Fgf-responsive 2.3 kb slit1 promoter sequence that recapitulates spatiotemporal endogenous expression in the neural tube and eye of Xenopus embryos. We found that signaling through Fgfr1 is the main regulator of slit1 expression both in vitro in A6 kidney epithelial cells, and in the Xenopus forebrain, even when other Fgfr subtypes are present in cells. These data argue that a specific signaling pathway downstream of Fgfr1 controls in a cell-autonomous manner slit1 forebrain expression and are novel in identifying a specific growth factor receptor for in vivo control of the expression of a key embryonic axon guidance cue.


Asunto(s)
Orientación del Axón/genética , Proteínas del Tejido Nervioso/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/fisiología , Proteínas de Xenopus/genética , Animales , Células Cultivadas , Embrión no Mamífero , Femenino , Regulación del Desarrollo de la Expresión Génica , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/fisiología , Activación Transcripcional/fisiología , Xenopus laevis
5.
Pigment Cell Melanoma Res ; 29(6): 688-701, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27557040

RESUMEN

Two biological processes regulate light-induced skin colour change. A fast 'physiological pigmentation change' (i.e. circadian variations or camouflage) involves alterations in the distribution of pigment containing granules in the cytoplasm of chromatophores, while a slower 'morphological pigmentation change' (i.e. seasonal variations) entails changes in the number of pigment cells or pigment type. Although linked processes, the neuroendocrine coordination triggering each response remains largely obscure. By evaluating both events in Xenopus laevis embryos, we show that morphological pigmentation initiates by inhibiting the activity of the classical retinal ganglion cells. Morphological pigmentation is always accompanied by physiological pigmentation, and a melatonin receptor antagonist prevents both responses. Physiological pigmentation also initiates in the eye, but with repression of melanopsin-expressing retinal ganglion cell activity that leads to secretion of alpha-melanocyte-stimulating hormone (α-MSH). Our findings suggest a model in which eye photoperception links physiological and morphological pigmentation by altering α-MSH and melatonin production, respectively.


Asunto(s)
Embrión no Mamífero/fisiopatología , Ojo/fisiopatología , Luz , Sistemas Neurosecretores/fisiopatología , Pigmentación de la Piel/fisiología , Xenopus laevis/fisiología , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de la radiación , Ojo/citología , Ojo/efectos de la radiación , Femenino , Melatonina/metabolismo , Sistemas Neurosecretores/efectos de la radiación , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de la radiación , Proteínas de Xenopus/metabolismo , alfa-MSH/metabolismo
6.
Dev Dyn ; 245(6): 667-77, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27005305

RESUMEN

BACKGROUND: Antioxidants such as the green tea polyphenol epigallocatechin gallate (EGCG) are neuroprotective under many conditions in mature nervous systems; however, their impact has rarely been explored in developing nervous systems, in which a critical step is the formation of connections between neurons. Axons emerge from newly formed neurons and are led by a dynamic structure found at their tip called a growth cone. Here we explore the impact of EGCG on the development of retinal ganglion cell (RGC) axons, which connect the eye to the brain. RESULTS: EGCG acts directly on RGC axons to increase the number of growth cone filopodia, fingerlike projections that respond to extrinsic signals, in vitro and in vivo. Furthermore, EGCG exposure leads to a dramatic defect in the guided growth of RGC axons where the axons fail to make a key turn in the mid-diencephalon required to reach their target. Intriguingly, at guidance points where RGCs do not show a change in direction, EGCG has no influence on RGC axon behavior. CONCLUSIONS: We propose that EGCG stabilizes filopodia and prevents normal filopodial dynamics required for axons to change their direction of outgrowth at guidance decision points. Developmental Dynamics 245:667-677, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Axones/efectos de los fármacos , Axones/metabolismo , Catequina/análogos & derivados , Conos de Crecimiento/efectos de los fármacos , Seudópodos/efectos de los fármacos , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Orientación del Axón/efectos de los fármacos , Encéfalo/citología , Encéfalo/efectos de los fármacos , Catequina/farmacología , Gonadotropina Coriónica/farmacología , Diencéfalo/citología , Diencéfalo/efectos de los fármacos , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Femenino , Humanos , Hibridación in Situ , Neurogénesis/efectos de los fármacos , Retina/citología , Retina/efectos de los fármacos , Xenopus
7.
Pigment Cell Melanoma Res ; 29(2): 186-98, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26582755

RESUMEN

Light-regulated skin colour change is an important physiological process in invertebrates and lower vertebrates, and includes daily circadian variation and camouflage (i.e. background adaptation). The photoactivation of melanopsin-expressing retinal ganglion cells (mRGCs) in the eye initiates an uncharacterized neuroendocrine circuit that regulates melanin dispersion/aggregation through the secretion of alpha-melanocyte-stimulating hormone (α-MSH). We developed experimental models of normal or enucleated Xenopus embryos, as well as in situ cultures of skin of isolated dorsal head and tails, to analyse pharmacological induction of skin pigmentation and α-MSH synthesis. Both processes are triggered by a melanopsin inhibitor, AA92593, as well as chloride channel modulators. The AA9253 effect is eye-dependent, while functional data in vivo point to GABAA receptors expressed on pituitary melanotrope cells as the chloride channel blocker target. Based on the pharmacological data, we suggest a neuroendocrine circuit linking mRGCs with α-MSH secretion, which is used normally during background adaptation.


Asunto(s)
Luz , Células Neuroendocrinas/metabolismo , Sistemas Neurosecretores/metabolismo , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones , Pigmentación de la Piel , Proteínas de Xenopus , alfa-MSH/metabolismo , Animales , Células Neuroendocrinas/citología , Sistemas Neurosecretores/citología , Células Ganglionares de la Retina/citología , Opsinas de Bastones/antagonistas & inhibidores , Opsinas de Bastones/metabolismo , Pigmentación de la Piel/efectos de los fármacos , Pigmentación de la Piel/efectos de la radiación , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/metabolismo , Xenopus laevis
8.
Mol Cell Neurosci ; 69: 30-40, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26455469

RESUMEN

To grow out to contact target neurons an axon uses its distal tip, the growth cone, as a sensor of molecular cues that help the axon make appropriate guidance decisions at a series of choice points along the journey. In the developing visual system, the axons of the output cells of the retina, the retinal ganglion cells (RGCs), cross the brain midline at the optic chiasm. Shortly after, they grow past the brain entry point of the optic nerve arising from the contralateral eye, and extend dorso-caudally through the diencephalon towards their optic tectum target. Using the developing visual system of the experimentally amenable model Xenopus laevis, we find that RGC axons are normally prevented from entering the contralateral optic nerve. This mechanism requires the activity of a Rho-associated kinase, Rock, known to function downstream of a number of receptors that recognize cues that guide axons. Pharmacological inhibition of Rock in an in vivo brain preparation causes mis-entry of many RGC axons into the contralateral optic nerve, and this defect is partially phenocopied by selective disruption of Rock signaling in RGC axons. These data implicate Rock downstream of a molecular mechanism that is critical for RGC axons to be able to ignore a domain, the optic nerve, which they previously found attractive.


Asunto(s)
Axones/metabolismo , Nervio Óptico/crecimiento & desarrollo , Retina/crecimiento & desarrollo , Células Ganglionares de la Retina/citología , Vías Visuales/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Femenino , Conos de Crecimiento/metabolismo , Xenopus laevis , Quinasas Asociadas a rho/genética
9.
Pigment Cell Melanoma Res ; 28(5): 559-71, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26095528

RESUMEN

How skin colour adjusts to circadian light/dark cycles is poorly understood. Melanopsin (Opn4) is expressed in melanophores, where in vitro studies suggest it regulates skin pigmentation through a 'primary colour response' in which light photosensitivity is translated directly into pigment movement. However, the entrainment of the circadian rhythm is regulated by a population of melanopsin-expressing retinal ganglion cells (mRGCs) in the eye. Therefore, in vivo, melanopsin may trigger a 'secondary colour response' initiated in the eye and controlled by the neuro-endocrine system. We analysed the expression of opn4m and opn4x and melanin aggregation induced by light (background adaptation) in Xenopus laevis embryos. While opn4m and opn4x are expressed at early developmental times, light-induced pigment aggregation requires the eye to become functional. Pharmacological inhibition of melanopsin suggests a model whereby mRGC activation lightens skin pigmentation via a secondary response involving negative regulation of alpha-melanocyte-stimulating hormone (α-MSH) secretion by the pituitary.


Asunto(s)
Hipófisis/metabolismo , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/metabolismo , Piel/metabolismo , alfa-MSH/metabolismo , Animales , Clonación Molecular , Ensayo de Inmunoadsorción Enzimática , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Luz , Melaninas/química , Melanóforos/metabolismo , Pigmentación de la Piel , Xenopus laevis
10.
Development ; 141(12): 2473-82, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24917502

RESUMEN

Organs are generated from collections of cells that coalesce and remain together as they undergo a series of choreographed movements to give the organ its final shape. We know little about the cellular and molecular mechanisms that regulate tissue cohesion during morphogenesis. Extensive cell movements underlie eye development, starting with the eye field separating to form bilateral vesicles that go on to evaginate from the forebrain. What keeps eye cells together as they undergo morphogenesis and extensive proliferation is unknown. Here, we show that plexina2 (Plxna2), a member of a receptor family best known for its roles in axon and cell guidance, is required alongside the repellent semaphorin 6a (Sema6a) to keep cells integrated within the zebrafish eye vesicle epithelium. sema6a is expressed throughout the eye vesicle, whereas plxna2 is restricted to the ventral vesicle. Knockdown of Plxna2 or Sema6a results in a loss of vesicle integrity, with time-lapse microscopy showing that eye progenitors either fail to enter the evaginating vesicles or delaminate from the eye epithelium. Explant experiments, and rescue of eye vesicle integrity with simultaneous knockdown of sema6a and plxna2, point to an eye-autonomous requirement for Sema6a/Plxna2. We propose a novel, tissue-autonomous mechanism of organ cohesion, with neutralization of repulsion suggested as a means to promote interactions between cells within a tissue domain.


Asunto(s)
Ojo/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/fisiología , Receptores de Superficie Celular/fisiología , Semaforinas/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Axones/metabolismo , Comunicación Celular , Movimiento Celular , Proliferación Celular , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Morfogénesis , Proteínas del Tejido Nervioso/genética , Prosencéfalo/embriología , Receptores de Superficie Celular/genética , Semaforinas/genética , Transducción de Señal , Células Madre/citología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
11.
Neural Dev ; 9: 3, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24521229

RESUMEN

BACKGROUND: Light information is sorted by neuronal circuits to generate image-forming (IF) (interpretation and tracking of visual objects and patterns) and non-image-forming (NIF) tasks. Among the NIF tasks, photic entrainment of circadian rhythms, the pupillary light reflex, and sleep are all associated with physiological responses, mediated mainly by a small group of melanopsin-expressing retinal ganglion cells (mRGCs). Using Xenopus laevis as a model system, and analyzing the c-fos expression induced by light as a surrogate marker of neural activity, we aimed to establish the developmental time at which the cells participating in both systems come on-line in the retina. RESULTS: We found that the peripheral retina contains 80% of the two melanopsin-expressing cell types we identified in Xenopus: melanopsin-expressing horizontal cells (mHCs; opn4m+/opn4x+/Prox1+) and mRGCs (2.7% of the total RGCs; opn4m+/opn4x+/Pax6+/Isl1), in a ratio of 6:1. Only mRGCs induced c-fos expression in response to light. Dopaminergic (tyrosine hydroxylase-positive; TH+) amacrine cells (ACs) may be part of the melanopsin-mediated circuit, as shown by preferential c-fos induction by blue light. In the central retina, two cell types in the inner nuclear layer (INL) showed light-mediated induction of c-fos expression [(On-bipolar cells (Otx2+/Isl1+), and a sub-population of ACs (Pax6-/Isl1-)], as well as two RGC sub-populations (Isl1+/Pax6+ and Isl1+/Pax6-). Melanopsin and opsin expression turned on a day before the point at which c-fos expression could first be activated by light (Stage 37/38), in cells of both the classic vision circuit, and those that participate in the retinal component of the NIF circuit. Key to the classic vision circuit is that the component cells engage from the beginning as functional 'unit circuits' of two to three cells in the INL for every RGC, with subsequent growth of the vision circuit occurring by the wiring in of more units. CONCLUSIONS: We identified melanopsin-expressing cells and specific cell types in the INL and the RGC layer which induce c-fos expression in response to light, and we determined the developmental time when they become active. We suggest an initial formulation of retinal circuits corresponding to the classic vision pathway and melanopsin-mediated circuits to which they may contribute.


Asunto(s)
Luz , Retina/embriología , Neuronas Retinianas/fisiología , Células Amacrinas/fisiología , Animales , Estimulación Luminosa , Proteínas Proto-Oncogénicas c-fos/metabolismo , Retina/citología , Retina/metabolismo , Retina/efectos de la radiación , Células Bipolares de la Retina/fisiología , Células Ganglionares de la Retina/fisiología , Neuronas Retinianas/citología , Neuronas Retinianas/metabolismo , Opsinas de Bastones/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Xenopus laevis
12.
Development ; 140(14): 2933-41, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23739132

RESUMEN

The majority of neurons in the nervous system exhibit a polarized morphology, with multiple short dendrites and a single long axon. It is clear that multiple factors govern polarization in developing neurons, and the biased accumulation of intrinsic determinants to one side of the cell, coupled with responses to asymmetrically localized extrinsic factors, appears to be crucial. A number of intrinsic factors have been identified, but surprisingly little is known about the identity of the extrinsic signals. Here, we show in vivo that neuropilin-1 (Nrp1) and its co-receptor plexinA1 (Plxna1) are necessary to bias the extension of the dendrites of retinal ganglion cells to the apical side of the cell, and ectopically expressed class III semaphorins (Sema3s) disrupt this process. Importantly, the requirement for Nrp1 and Plxna1 in dendrite polarization occurs at a developmental time point after the cells have already extended their basally directed axon. Thus, we propose a novel mechanism whereby an extrinsic factor, probably a Sema3, acts through Nrp1 and Plxna1 to promote the asymmetric outgrowth of dendrites independently of axon polarization.


Asunto(s)
Dendritas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuropilina-1/metabolismo , Retina/citología , Proteínas de Xenopus/metabolismo , Animales , Polaridad Celular , Femenino , Retina/metabolismo , Células Ganglionares de la Retina/citología , Semaforina-3A/metabolismo , Xenopus laevis
13.
Dev Dyn ; 240(12): 2657-72, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22072576

RESUMEN

In Xenopus laevis embryos, heparanase, the enzyme that degrades heparan sulfate, is synthesized as a preproheparanase (XHpaL) and processed to become enzymatically active (XHpa active). A short nonenzymatic heparanase splice variant (XHpaS) is also expressed. Using immunohistochemistry, Western blot, and heparanase promoter analysis, we studied the dynamic developmental expression of the three heparanases. Our results indicate that (1) all three isoforms are maternally expressed; (2) XHpaS is a developmental variant; (3) in the early embryo, heparanase is localized to both the plasma membrane and the nucleus; (4) several tissues express heparanase, but expression in the developing nervous system is most evident; (5) two promoters with distinct activities in different tissues drive heparanase expression; (6) Oct binding transcription factors may modulate heparanase promoter activity in the early embryo. These data argue that heparanase is expressed widely during development, but localization and levels are finely regulated.


Asunto(s)
Embrión no Mamífero/enzimología , Precursores Enzimáticos/biosíntesis , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Liasa de Heparina/biosíntesis , Regiones Promotoras Genéticas/fisiología , Proteínas de Xenopus/biosíntesis , Animales , Células COS , Membrana Celular/enzimología , Membrana Celular/genética , Chlorocebus aethiops , Embrión no Mamífero/citología , Precursores Enzimáticos/genética , Liasa de Heparina/genética , Humanos , Sistema Nervioso/citología , Sistema Nervioso/embriología , Sistema Nervioso/enzimología , Especificidad de Órganos/fisiología , Proteínas de Xenopus/genética , Xenopus laevis
14.
J Neurosci ; 30(2): 685-93, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20071533

RESUMEN

Axons are guided to their targets by molecular cues expressed in their environment. How is the presence of these cues regulated? Although some evidence indicates that morphogens establish guidance cue expression as part of their role in patterning tissues, an important question is whether morphogens are then required to maintain guidance signals. We found that fibroblast growth factor (FGF) signaling sustains the expression of two guidance cues, semaphorin3A (xsema3A) and slit1 (xslit1), throughout the period of Xenopus optic tract development. With FGF receptor inhibition, xsema3A and xslit1 levels were rapidly diminished, and retinal ganglion cell axons arrested in the mid-diencephalon, before reaching their target. Importantly, direct downregulation of XSema3A and XSlit1 mostly phenocopied this axon guidance defect. Thus, FGFs promote continued presence of specific guidance cues critical for normal optic tract development, suggesting a second later role for morphogens, independent of tissue patterning, in maintaining select cues by acting to regulate their transcription.


Asunto(s)
Axones/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas del Tejido Nervioso/metabolismo , Semaforina-3A/metabolismo , Transducción de Señal/fisiología , Vías Visuales/anatomía & histología , Animales , Diencéfalo/citología , Diencéfalo/metabolismo , Embrión no Mamífero , Inhibidores Enzimáticos/farmacología , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Ratones , Proteínas del Tejido Nervioso/genética , Fragmentos de Péptidos/farmacología , Pirroles/farmacología , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Células Ganglionares de la Retina/citología , Semaforina-3A/genética , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Vías Visuales/embriología , Vías Visuales/metabolismo , Xenopus
15.
Mech Dev ; 127(1-2): 36-48, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19961927

RESUMEN

Guidance factors act on the tip of a growing axon to direct it to its target. What role these molecules play, however, in the control of the dendrites that extend from that axon's cell body is poorly understood. Slits, through their Robo receptors, guide many types of axons, including those of retinal ganglion cells (RGCs). Here we assess and contrast the role of Slit/Robo signalling in the growth and guidance of the axon and dendrites extended by RGCs in Xenopus laevis. As Xenopus RGCs extend dendrites, they express robo2 and robo3, while slit1 and slit2 are expressed in RGCs and in the adjacent inner nuclear layer. Interestingly, our functional data with antisense knockdown and dominant negative forms of Robo2 (dnRobo2) and Robo3 (dnRobo3) indicate that Slit/Robo signalling has no role in RGC dendrite guidance, and instead is necessary to stimulate dendrite branching, primarily via Robo2. Our in vitro culture data argue that Slits are the ligands involved. In contrast, both dnRobo2 and dnRobo3 inhibited the extension of axons and caused the misrouting of some axons. Based on these data, we propose that Robo signalling can have distinct functions in the axon and dendrites of the same cell, and that the specific combinations of Robo receptors could underlie these differences. Slit acts via Robo2 in dendrites as a branching/growth factor but not in guidance, while Robo2 and Robo3 function in concert in axons to mediate axonal interactions and respond to Slits as guidance factors. These data underscore the likelihood that a limited number of extrinsic factors regulate the distinct morphologies of axons and dendrites.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/fisiología , Receptores Inmunológicos/metabolismo , Proteínas de Xenopus/fisiología , Xenopus laevis/metabolismo , Animales , Axones/metabolismo , Dendritas/metabolismo , Genes Dominantes , Proteínas Fluorescentes Verdes/metabolismo , Conos de Crecimiento/metabolismo , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Oligonucleótidos/genética , Retina/embriología , Células Ganglionares de la Retina/metabolismo , Transducción de Señal , Proteínas de Xenopus/biosíntesis
16.
Dev Biol ; 330(2): 273-85, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19361494

RESUMEN

The actin cytoskeleton inside extending axonal and dendritic processes must undergo continuous assembly and disassembly. Some extrinsic factors modulate actin turnover through controlling the activity of LIM kinase 1 (LIMK1), which phosphorylates and inactivates the actin depolymerizing factor cofilin. Here, we for the first time examine the function and regulation of LIMK1 in vivo in the vertebrate nervous system. Upon expression of wildtype or kinase-dead forms of the protein, dendrite growth by Xenopus retinal ganglion cells (RGCs) was unchanged. In contrast, maintaining a low, but significant level, of LIMK1 function in the RGC axon is critical for proper extension. Interestingly, bone morphogenetic protein receptor II (BMPRII) is a major regulator of LIMK1 in extending RGC axons, as expression of a BMPRII lacking the LIMK1 binding region caused a dramatic shortening of the axons. Previously, we found that BMPRIIs stimulate dendrite initiation in vivo. Thus, the fact that manipulation of LIMK1 activity failed to alter dendrite growth suggests that BMPs may activate distinct signalling pathways in axons and dendrites.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Dendritas/metabolismo , Células Ganglionares de la Retina/metabolismo , Transducción de Señal/fisiología , Proteínas de Xenopus/fisiología , Animales , Secuencia de Bases , Cartilla de ADN , Inmunohistoquímica , Hibridación in Situ , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , Transgenes , Proteínas de Xenopus/genética , Xenopus laevis
17.
Mol Cell Neurosci ; 37(2): 247-60, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17997109

RESUMEN

Each type of neuron develops a unique morphology critical to its function, but almost all start with the basic plan of one long axon and multiple short, branched dendrites. Though extrinsic signals are known to direct many steps in the development of neuronal structure, little is understood about the initiation of processes, particularly dendrites. We find that Xenopus retinal ganglion cells (RGCs) explanted early will extend axons and not dendrites in dissociated cultures. If RGCs develop longer in vivo prior to culturing, many now extend dendrite-like processes in vitro, suggesting that an extrinsic factor is required to stimulate dendrite initiation. Members of the transforming growth factor beta (TGFbeta) superfamily, bone morphogenetic protein 2 (BMP2), and growth and differentiation factor 11 (GDF11), can signal cultured RGCs to form dendrites. Furthermore, TGFbeta ligands have an endogenous role: blocking BMP/GDF signaling with a secreted antagonist or inhibitory receptors reduces the number of primary dendrites extended in vivo.


Asunto(s)
Diferenciación Celular/fisiología , Dendritas/ultraestructura , Retina/embriología , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Factor de Crecimiento Transformador beta/agonistas , Animales , Proteína Morfogenética Ósea 2 , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Dendritas/efectos de los fármacos , Femenino , Factores de Diferenciación de Crecimiento , Oocitos , Retina/citología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Xenopus laevis
18.
J Neurosci ; 27(31): 8448-56, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17670992

RESUMEN

The role of extrinsic cues in guiding developing axons is well established; however, the means by which the activity of these extrinsic cues is regulated is poorly understood. A disintegrin and metalloproteinase (ADAM) enzymes are Zn-dependent proteinases that can cleave guidance cues or their receptors in vitro. Here, we identify the first example of a metalloproteinase that functions in vertebrate axon guidance in vivo. Specifically, ADAM10 is required for formation of the optic projection by Xenopus retinal ganglion cell (RGC) axons. Xadam10 mRNA is expressed in the dorsal neuroepithelium through which RGC axons extend. Pharmacological or molecular inhibition of ADAM10 within the brain each resulted in a failure of RGC axons to recognize their target. In contrast, molecular inhibition of ADAM10 within the RGC axons themselves had no effect. These data argue strongly that in the dorsal brain ADAM10 acts cell non-autonomously to regulate the guidance of RGC axons.


Asunto(s)
Proteínas ADAM/fisiología , Secretasas de la Proteína Precursora del Amiloide/fisiología , Axones/enzimología , Sistemas de Liberación de Medicamentos , Proteínas de la Membrana/fisiología , Retina/enzimología , Células Ganglionares de la Retina/enzimología , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/genética , Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Axones/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos/métodos , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Inhibidores de Proteasas/administración & dosificación , Retina/efectos de los fármacos , Células Ganglionares de la Retina/efectos de los fármacos , Xenopus laevis
19.
Dev Dyn ; 236(1): 192-202, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17072860

RESUMEN

The timing of cell cycle exit is tightly linked to cell fate specification in the developing retina. Accordingly, several tumor suppressor genes, which are key regulators of cell cycle exit in cancer cells, play critical roles in retinogenesis. Here we investigated the role of Zac1, a tumor suppressor gene encoding a zinc finger transcription factor, in retinal development. Strikingly, in gain-of-function assays in Xenopus, mouse Zac1 promotes proliferation and apoptosis at an intermediate stage of retinogenesis. Zac1 also influences cell fate decisions, preferentially promoting the differentiation of tumor-like clusters of abnormal neuronal cells in the ganglion cell layer, as well as inducing the formation of supernumerary Müller glial cells at the expense of other cell types. Thus Zac1 has the capacity to influence cell cycle exit, and cell fate specification and differentiation decisions by retinal progenitors, suggesting that further functional studies will uncover new insights into how retinogenesis is regulated.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Genes Supresores de Tumor/fisiología , Neuroglía/citología , Retina/embriología , Células Ganglionares de la Retina/citología , Factores de Transcripción/fisiología , Animales , Apoptosis , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Linaje de la Célula , Inmunohistoquímica , Ratones , Morfogénesis , Retina/fisiología , Células Ganglionares de la Retina/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xenopus laevis , Dedos de Zinc
20.
Development ; 132(15): 3371-9, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15975939

RESUMEN

Axons receive guidance information from extrinsic cues in their environment in order to reach their targets. In the frog Xenopus laevis, retinal ganglion cell (RGC) axons make three key guidance decisions en route through the brain. First, they cross to the contralateral side of the brain at the optic chiasm. Second, they turn caudally in the mid-diencephalon. Finally, they must recognize the optic tectum as their target. The matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase (ADAM) families are zinc (Zn)-dependent proteolytic enzymes. The latter functions in axon guidance, but a similar role has not yet been identified for the MMP family. Our previous work implicated metalloproteinases in the guidance decisions made by Xenopus RGC axons. To test specifically the importance of MMPs, we used two different in vivo exposed brain preparations in which RGC axons were exposed to an MMP-specific pharmacological inhibitor (SB-3CT), either as they reached the optic chiasm or as they extended through the diencephalon en route to the optic tectum. Interestingly, SB-3CT affected only two of the guidance decisions, with misrouting defects at the optic chiasm and tectum. Only at higher concentrations was RGC axon extension also impaired. These data implicate MMPs in the guidance of vertebrate axons, and suggest that different metalloproteinases function to regulate axon behaviour at distinct choice points: an MMP is important in guidance at the optic chiasm and the target, while either a different MMP or an ADAM is required for axons to make the turn in the mid-diencephalon.


Asunto(s)
Axones/fisiología , Metaloproteinasas de la Matriz/metabolismo , Células Ganglionares de la Retina/fisiología , Animales , Axones/efectos de los fármacos , Axones/ultraestructura , Encéfalo/embriología , Embrión no Mamífero/fisiología , Compuestos Heterocíclicos con 1 Anillo/farmacología , Hibridación in Situ , Inhibidores de la Metaloproteinasa de la Matriz , Morfogénesis , Quiasma Óptico/embriología , Células Ganglionares de la Retina/citología , Sulfonas/farmacología , Proteínas de Xenopus/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...