Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Sci Nutr ; 11(11): 6789-6801, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37970406

RESUMEN

Colon cancer (CC) is one of the most common and deadly cancers worldwide. Oncologists are facing challenges such as development of drug resistance and lack of suitable drug options for CC treatment. Flavonoids are a group of natural compounds found in fruits, vegetables, and other plant-based foods. According to research, they have a potential role in the prevention and treatment of cancer. Apigenin is a flavonoid that is present in many fruits and vegetables. It has been used as a natural antioxidant for a long time and has been considered due to its anticancer effects and low toxicity. The results of this review study show that apigenin has potential anticancer effects on CC cells through various mechanisms. In this comprehensive review, we present the cellular targets and signaling pathways of apigenin indicated to date in in vivo and in vitro CC models. Among the most important modulated pathways, Wnt/ß-catenin, PI3K/AKT/mTOR, MAPK/ERK, JNK, STAT3, Bcl-xL and Mcl-1, PKM2, and NF-kB have been described. Furthermore, apigenin suppresses the cell cycle in G2/M phase in CC cells. In CC cells, apigenin-induced apoptosis is increased by inhibiting the formation of autophagy. According to the results of this study, apigenin appears to have the potential to be a promising agent for CC therapy, but more research is required in the field of pharmacology and pharmacokinetics to establish the apigenin effects and its dosage for clinical studies.

2.
Fundam Clin Pharmacol ; 37(6): 1092-1108, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37402635

RESUMEN

BACKGROUND: Tamoxifen (TAM) is often recommended as a first-line treatment for estrogen receptor-positive breast cancer (BC). However, TAM resistance continues to be a medical challenge for BC with hormone receptor positivity. The function of macro-autophagy and autophagy has recently been identified to be altered in BC, which suggests a potential mechanism for TAM resistance. Autophagy is a cellular stress-induced response to preserve cellular homeostasis. Also, therapy-induced autophagy, which is typically cytoprotective and activated in tumor cells, could sometimes be non-protective, cytostatic, or cytotoxic depending on how it is regulated. OBJECTIVE: This review explored the literature on the connections between hormonal therapies and autophagy. We investigated how autophagy could develop drug resistance in BC cells. METHODS: Scopus, Science Direct, PubMed, and Google Scholar were used to search articles for this study. RESULTS: The results demonstrated that protein kinases such as pAMPK, BAX, and p-p70S6K could be a sign of autophagy in developing TAM resistance. According to the study's findings, autophagy plays an important role in BC patients' TAM resistance. CONCLUSION: Therefore, by overcoming endocrine resistance in estrogen receptor-positive breast tumors, autophagy inhibition may improve the therapeutic efficacy of TAM.


Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Humanos , Femenino , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Neoplasias de la Mama/metabolismo , Receptores de Estrógenos/uso terapéutico , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Autofagia , Resistencia a Antineoplásicos , Línea Celular Tumoral
3.
Anticancer Agents Med Chem ; 23(16): 1819-1828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448364

RESUMEN

Signal transducers and activators of transcription 3 (STAT 3) have been proposed to be responsible for breast cancer development. Moreover, evidence depicted that upregulation of STAT3 is responsible for angiogenesis, metastasis, and chemo-resistance of breast cancer. Tamoxifen (TAM) resistance is a major concern in breast cancer management which is mediated by numerous signaling pathways such as STAT3. Therefore, STAT3 targeting inhibitors would be beneficial in breast cancer treatment. The information on the topic in this review was gathered from scientific databases such as PubMed, Scopus, Google Scholar, and ScienceDirect. The present review highlights STAT3 signaling axis discoveries and TAM targeting STAT3 in breast cancer. Based on the results of this study, we found that following prolonged TAM treatment, STAT3 showed overexpression and resulted in drug resistance. Moreover, it was concluded that STAT3 plays an important role in breast cancer stem cells, which correlated with TAM resistance.


Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Humanos , Femenino , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Neoplasias de la Mama/patología , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Resistencia a Antineoplásicos , Transducción de Señal , Línea Celular Tumoral , Factor de Transcripción STAT3/metabolismo
4.
Fundam Clin Pharmacol ; 37(6): 1050-1064, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37259891

RESUMEN

BACKGROUND: Neurological disorders (NLDs) are widely acknowledged as a significant public health concern worldwide. Stroke, Alzheimer's disease (AD), and traumatic brain injury (TBI) are three of these disorders that have sparked major study attention. Neurological dysfunction, protein buildup, oxidation and neuronal injury, and aberrant mitochondria are all prevalent neuropathological hallmarks of these disorders. The signaling cascade of nuclear factor erythroid 2 related factor 2 (Nrf2) shares all of them as a common target. Several studies have found that overexpression of Nrf2 is a promising treatment method in NLDs. Effective treatment of these disorders continues to be a universal concern regardless of various medicines. In order to treat a variety of neurological problems, organic remedies may provide an alternative treatment. It has been demonstrated that polyphenols like quercetin (Que) offer considerable capabilities for treating NLDs. One of Que's greatest key targets, Nrf2, has the capacity to control the production of a number of cytoprotective enzymes that exhibit neuroprotective, detoxifying, and antioxidative effects. Additionally, Que enhanced the expression of Nrf2 and inhibited alterations in the shape and death of neurons in the hippocampus. OBJECTIVE: In this review, we have focused on Que's medicinal prospects as a neuroprotective drug. METHODS: PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS: The findings of this research demonstrate that (1) Que protected the blood-brain barrier via stimulating Nrf2 in animal stroke, which alleviated ischemic reperfusion and motor dysfunction. (2) By triggering the Nrf2 pathway, Que reduced the neuroinflammation and oxidative damage brought on by TBI in the cortex. (3) In an experimental model of AD, Que enhanced cognitive function by decreasing A1-4, antioxidant activity, and Nrf2 levels in the brain. CONCLUSION: We discuss recent research on Que-mediated Nrf2 expression in the management of several NLDs in this paper.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Enfermedades del Sistema Nervioso , Fármacos Neuroprotectores , Accidente Cerebrovascular , Animales , Quercetina/farmacología , Quercetina/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Estrés Oxidativo , Transducción de Señal , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico
5.
Clin Case Rep ; 11(6): e7474, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37361654

RESUMEN

Key Clinical Message: Hyperparathyroidism is a common endocrine disorder, which must be suspected in patients presenting with fatigue, history of pathologic fracture and the diagnosis can be confirmed by elevated calcium and PTH levels, and the preferred treatment option. Abstract: Primary hyperparathyroidism (PHPT), a common endocrine condition, with elevated parathormone production causes increased blood calcium levels. Parathyroid adenomas cause the majority of PHPT cases. Significant hypercalcemia can result from giant parathyroid adenomas. A calcium crisis may not always arise in these individuals, despite enormous parathyroid adenomas and high parathyroid hormone levels, and the masses may first be mistaken for a thyroid mass. In this article, we discuss the case of a 57-year-old Iranian man who suffered from PHPT due to a massive parathyroid adenoma and had a history of extreme fatigue and several traumatic fractures. As specialists, we should have a strong clinical suspicion of giant parathyroid adenoma as reason of hyperparathyroidism. In patients with multiple bone problems such as pain and multiple pathological fractures and elevated levels of calcium and PTH, the diagnosis of GPA must be considered and their preferred treatment is surgery.

6.
Mol Biol Rep ; 50(6): 5455-5464, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37155008

RESUMEN

Parkinson's disease (PD) as a prevalent neurodegenerative condition impairs motor function and is caused by the progressive deterioration of nigrostriatal dopaminergic (DAergic) neurons. The current therapy solutions for PD are ineffective because they could not inhibit the disease's progression and they even have adverse effects. Natural polyphenols, a group of phytochemicals, have been found to offer various health benefits, including neuroprotection against PD. Among these, resveratrol (RES) has neuroprotective properties owing to its capacity to protect mitochondria and act as an antioxidant. An increase in the formation of reactive oxygen species (ROS) leads to oxidative stress (OS), which is responsible for cellular damage resulting in lipid peroxidation, oxidative protein alteration, and DNA damage. In PD models, it's been discovered that RES pretreatment can diminish oxidative stress by boosting endogenous antioxidant status and directly scavenging ROS. Several studies have examined the involvement of RES in the modulation of the transcriptional factor Nrf2 in PD models because this protein recognizes oxidants and controls the antioxidant defense. In this review, we have examined the molecular mechanisms underlying the RES activity and reviewed its effects in both in vitro and in vivo models of PD. The gathered evidence herein showed that RES treatment provides neuroprotection against PD by reducing OS and upregulation of Nrf2. Moreover, in the present study, scientific proof of the neuroprotective properties of RES against PD and the mechanism supporting clinical development consideration has been described.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Resveratrol/farmacología , Resveratrol/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Transducción de Señal , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
7.
Curr Mol Pharmacol ; 16(3): 331-345, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35726417

RESUMEN

In the present study, the health-protective and therapeutic properties of MET have been discussed, focusing on the effect of MET on the Nrf2 expression in patients with different pathological conditions. Metformin (MET) regulates high blood glucose, thus being an integral part of the antidiabetic medications used to treat type 2 diabetes mellitus. It belongs to biguanide class medications that are administered through the oral route. Moreover, the agent is widely known for its anti-cancer, anti-oxidant, anti-inflammatory, and neuroprotective effects. The MET modulates the nuclear factor erythroid-2 related factor-2 (Nrf2) signaling pathway, which in turn yields the above-mentioned medical benefits to patients. The Nrf2 signaling pathways are modulated in multiple ways described subsequently: 1) MET acts on the cancer cells and inactivates Raf-ERK signaling, thus reducing Nrf2 expression, 2) MET obstructs the expression of proteins that are involved in apoptosis of tumor cells and also prevents tumor cells from oxidation through an AMPK-independent pathway; 3) MET carries out Keap1-independent mechanism for reducing the levels of Nrf2 protein in cancer cells; 4) MET upregulates the Nrf2-mediated transcription to stimulate the anti-oxidant process that prevents oxidative stress in cells system and consequently gives neuroprotection from rotenone and 5) MET downregulates p65 and upregulates Nrf2 which helps improve the angiogenesis impairment stimulated by gestational diabetes mellitus. This article presents an analysis of the health-protective properties of MET and also sheds light on the effect of MET on the Nrf2 expression in patients with different pathological conditions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Antioxidantes/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Transducción de Señal , Estrés Oxidativo
8.
Curr Mol Pharmacol ; 16(4): 507-516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36056861

RESUMEN

Modafinil (MOD, 2-diphenyl-methyl-sulphinil-2-acetamide) is a stimulant-like medicine used to treat narcolepsy. Off-label uses include improving cognitive ability in the course of other diseases. This review aims to discuss findings demonstrating the memory and learningenhancing activity of MOD in experimental and clinical studies. We included behavioral evaluations alongside the effects of MOD at the cellular and molecular level. MOD in different animal disease models exerted beneficial effects on induced memory and learning impairment, which in some cases were accompanied by modulation of neurotransmitter pathways or neuroplastic capabilities, reducing oxidative stress, or expression of synaptic proteins. Individuals treated with MOD showed improved memory and learning skills in different conditions. These effects were associated with regulating brain activity in some participants, confirmed by functional magnetic resonance imaging. Presented herein, data support the use of MOD in treating memory and learning deficits in various disease conditions.


Asunto(s)
Compuestos de Bencidrilo , Animales , Modafinilo/farmacología , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico
9.
CNS Neurol Disord Drug Targets ; 22(10): 1453-1461, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36200161

RESUMEN

Parkinson's disease (PD) is a chronic and progressive neurological disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). The pathogenesis of PD is strongly related to mitochondrial dysfunction, oxidative stress, and neuroinflammation. This indicates that PD can be treated with anti-oxidative substitutes and anti-inflammatory compounds. The neuroprotective and anti-inflammatory effects of peroxisome proliferator-activated receptor γ (PPAR-γ) agonists decrease cell death and halt the increase in neurodegeneration, which is why they have been given a lot of importance in research. Antidiabetic and anti-inflammatory effects have been observed to be generated by pioglitazone (PG), a selective peroxisome proliferator-activated receptor γ (PPAR-γ) agonist that regulates neural plasticity in various neurodegenerative disorders. The neuroprotective and anti-inflammatory effects of PG are assessed in this article. It was found that the patients with DM who received PG treatment were noticeably at a lower risk of PD. However, some clinical studies have not proven a strong link between the therapeutic effects of PG on PD. As per suggestions of preclinical studies, the therapeutic effects of PG treatment include; increased life expectancy of neurons, decreased oxidative stress, halted microglial activity, lower inflammation (reduced NF-κB, COX-2, and iNOS), reduced mitochondrial dysfunction, rise in motor function (motor agility) and non-motor function (lowered cognitive dysfunction). In conclusion, we determined that PG exerts neuroprotective and anti-inflammatory effects in PD models and it can be considered a potential therapeutic candidate for PD.


Asunto(s)
Antiinflamatorios no Esteroideos , Fármacos Neuroprotectores , Enfermedad de Parkinson , Pioglitazona , Pioglitazona/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Humanos , Antiinflamatorios no Esteroideos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico
10.
Mediators Inflamm ; 2022: 9860855, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757108

RESUMEN

Traumatic brain injury (TBI) is still a major cause of concern for public health, and out of all the trauma-related injuries, it makes the highest contribution to death and disability worldwide. Patients of TBI continue to suffer from brain injury through an intricate flow of primary and secondary injury events. However, when treatment is provided in a timely manner, there is a significant window of opportunity to avoid a few of the serious effects. Pioglitazone (PG), which has a neuroprotective impact and can decrease inflammation after TBI, activates peroxisome proliferator-activated receptor-gamma (PPARγ). The objective of the study is to examine the existing literature to assess the neuroprotective and anti-inflammatory impact of PG in TBI. It also discusses the part played by microglia and cytokines in TBI. According to the findings of this study, PG has the ability to enhance neurobehavior, decrease brain edema and neuronal injury following TBI. To achieve the protective impact of PG the following was required: (1) stimulating PPARγ; (2) decreasing oxidative stress; (3) decreasing nuclear factor kappa B (NF-κB), interleukin 6 (IL-6), interleukin-1ß (IL-1ß), cyclooxygenase-2 (COX-2), and C-C motif chemokine ligand 20 (CCL20) expression; (4) limiting the increase in the number of activated microglia; and (5) reducing mitochondrial dysfunction. The findings indicate that when PIG is used clinically, it may serve as a neuroprotective anti-inflammatory approach in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Fármacos Neuroprotectores , Animales , Antiinflamatorios/farmacología , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , PPAR gamma/metabolismo , Pioglitazona/farmacología , Pioglitazona/uso terapéutico
11.
Fundam Clin Pharmacol ; 36(3): 468-485, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34935193

RESUMEN

Being the most essential organ in the body, the liver performs critical functions. Hepatic disorders, such as alcoholic liver disease, hepatic steatosis, liver fibrosis, nonalcoholic fatty liver disease, hepatocellular carcinoma, and hepatic failure, have an impact on the biochemical and physiological functions of the body. The main representative of the flavonoid subgroup of flavones, resveratrol (RES), exhibits suitable pharmacological activities for treating various liver diseases, such as fatty hepatitis, liver steatosis, liver cancer, and liver fibrosis. According to various studies, grapes and red wine are good sources of RES. RES has various health properties; it is anti-inflammatory, anti-apoptotic, antioxidative, and hepatoprotective against several hepatic diseases and hepatoxicity. Therefore, we performed a thorough research and created a summary of the distinct targets of RES in various stages of liver diseases. We concluded that RES inhibited liver inflammation essentially by causing a significant decrease in the expression of various pro-inflammatory cytokines like TNF-α, IL-1α, IL-1ß, and IL-6. It also inhibits the transcription factor nuclear NF-κB that brings about the inflammatory cascade. RES also inhibits the PI3K/Akt/mTOR pathway to induce apoptosis. Additionally, it reduces oxidative stress in hepatic tissue by markedly reducing malondialdehyde (MDA) and nitric oxide (NO) contents and significantly increasing the levels of catalase (CAT), superoxide dismutase (SOD), and reduced hepatic glutathione (GSH), in addition to aspartate aminotransferase (AST) and alanine aminotransferase (ALT), against toxic chemicals like CC14, As2O3, and TTA. Due to its antioxidant, anti-inflammatory, and anti-fibrotic properties, RES reduces liver injury markers. RES is safe natural antioxidant that provides pharmacological rectification of the hepatoxicity of toxic chemicals.


Asunto(s)
Antiinflamatorios , Antioxidantes , Hepatopatías , Resveratrol , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Glutatión/metabolismo , Humanos , Hígado , Hepatopatías/tratamiento farmacológico , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Resveratrol/farmacología
12.
J Food Sci Technol ; 57(9): 3415-3425, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32728289

RESUMEN

Adulteration of olive oil with the other cheap oils and fats plays an important role in economics and has nutritional benefits. In this work, metabolite profiling was performed using gas chromatography-mass spectrometry to identify and quantify animal fat (lard) adulteration in vegetable oil (olive oil). Principal component analysis could correctly identify and clustering olive oil, sunflower oil, sesame oil, lard, and adulterated samples through the changes in their fatty acid methyl esters (FAMEs) profile. A targeted metabolomics method was then optimized and validated through construction of calibration curves of known FAMSs in olive oil and lard. The method was presented high linearity (R2 > 0.96) and good intra and inter day accuracy and precision (79-101 and 86-102% and 2-7 and 3-7, respectively) for determination of FAMEs. Afterwards the absolute concentration and relative percentage of FAMEs were successfully determined in 12 commercial olive oils and 3 lards samples. Methyl myristate, methyl palmitate, methyl oleate, and methyl stearate were selected as discriminant markers to identify and quantify lard adulteration even at a low level of lard (5%w/w), with errors less than 2% in the comparison of the absolute or relative concentrations of FAMEs using several statistical methods. The proposed methodology allowed us to quantify the FAMEs simultaneously and also could predict small amount of lard in the adulterated olive oil samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...