Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 322: 116090, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36049311

RESUMEN

The long process time and low product quality are major challenges in the composting process. To overcome the above challenges, the effects of produced biosurfactants on composting were investigated as a biological model. Pseudomonas aeruginosa IBRC-M 11180 inoculum and its supernatant were used as in-situ and ex-situ treatments in the composting process, respectively. The results showed that the presence of rhamnolipid biosurfactants in the composting process could improve many parameters such as maximum temperature, electrical conductivity (EC), cation exchange capacity (CEC), C/N, and germination index (GI). The GI value above 80% was observed for in-situ and ex-situ reactors on 12th day, while for the control was observed on 18th day, which indicates the significant effects of rhamnolipids on process time reduction. The C/N ratios of final compost for ex-situ, in-situ, and control reactors were 12.83, 13.27, and 17.05, respectively, which indicates the rhamnolipids also improves the quality of the final product. To better understand the performance of the rhamnolipids in the composting, wettability changes of the compost surface were evaluated. Our results show that the produced rhamnolipids altered the waste wettability from intermediate wet (θ = 85°) to water-wet (θ = 40°). It can be concluded that the presence of biosurfactants in composting leads to an increase in the contact surface area of microorganisms with nutrient sources and consequently improves the composting process. Furthermore, comparative studies showed that the in-situ treatment has better effects on composting, thus it can be an economically significant achievement because of the high cost of ex-situ treatment.


Asunto(s)
Compostaje , Eliminación de Residuos , Alimentos , Glucolípidos , Nitrógeno , Suelo , Agua
2.
J Environ Health Sci Eng ; 17(1): 295-303, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31321048

RESUMEN

A lack of understanding about the effect of microorganism inoculation on compost production and relatively expensive downstream processing are the main obstacles towards an economic compost production. Our work tries to fill this gap. For this, influence of inoculation on the composting of organic fraction of municipal solid waste (OFMSW) to produce compost with higher agronomic value was evaluated. Three similar aerated bioreactors (A, B and C) with the same size and shape in laboratory scale designed. Reactor A was inoculated with the Aspergillus niger IBRC-M 30095, reactor B was inoculated with old compost and reactor C was used as a control. During the composting process temperature, moisture, pH, and electrical conductivity (EC) were evaluated. Also, the ratio of carbon to nitrogen (C/N) and germination index (GI) were measured in during process to evaluate compost maturity. The results of this study showed that the C/Ns decreased to about 63.37%, 59.6% and 46% for bioreactors B, A and control, respectively. Also maximum GI and temperature reached to about 138% and 59 °C in reactor B. Furthermore, our results showed that inoculation with this microorganism reduces process time to 18 days that is better than the results of other researchers and thus results in cost savings. However, we think, Aspergillus niger is appropriate candidate for compost production as a model. Graphical abstractSchematic diagram of experimental reactors: Reactor A was inoculated with the Aspergillus Niger IBRC-M 30095, reactor B was inoculated with old compost and reactor C used as a control without inoculation; (1) composting tank; (2) air compressor; (3) gas flow meter; (4) air regulator; (5) thermal probe; (6) exhausted gas; (7) mixer; (8) effluent; (9) moisture content probe; (10) sampling; (11) electric motor; (12) pump.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...