Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(20): 206901, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38829079

RESUMEN

When Bloch electrons in a solid are exposed to a strong optical field, they are coherently driven in their respective bands where they acquire a quantum phase as the imprint of the band shape. If an electron approaches an avoided crossing formed by two bands, it may be split by undergoing a Landau-Zener transition. We here employ subsequent Landau-Zener transitions to realize strong-field Bloch electron interferometry, allowing us to reveal band structure information. In particular, we measure the Fermi velocity (band slope) of graphene in the vicinity of the K points as (1.07±0.04) nm fs^{-1}. We expect strong-field Bloch electron interferometry for band structure retrieval to apply to a wide range of material systems and experimental conditions, making it suitable for studying transient changes in band structure with femtosecond temporal resolution at ambient conditions.

2.
Nat Commun ; 14(1): 4953, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587120

RESUMEN

Nonlinear optical materials possess wide applications, ranging from terahertz and mid-infrared detection to energy harvesting. Recently, the correlations between nonlinear optical responses and certain topological properties, such as the Berry curvature and the quantum metric tensor, have attracted considerable interest. Here, we report giant room-temperature nonlinearities in non-centrosymmetric two-dimensional topological materials-the Janus transition metal dichalcogenides in the 1 T' phase, synthesized by an advanced atomic-layer substitution method. High harmonic generation, terahertz emission spectroscopy, and second harmonic generation measurements consistently show orders-of-the-magnitude enhancement in terahertz-frequency nonlinearities in 1 T' MoSSe (e.g., > 50 times higher than 2H MoS2 for 18th order harmonic generation; > 20 times higher than 2H MoS2 for terahertz emission). We link this giant nonlinear optical response to topological band mixing and strong inversion symmetry breaking due to the Janus structure. Our work defines general protocols for designing materials with large nonlinearities and heralds the applications of topological materials in optoelectronics down to the monolayer limit.

3.
Nature ; 605(7909): 251-255, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35546189

RESUMEN

Light-driven electronic excitation is a cornerstone for energy and information transfer. In the interaction of intense and ultrafast light fields with solids, electrons may be excited irreversibly, or transiently during illumination only. As the transient electron population cannot be observed after the light pulse is gone, it is referred to as virtual, whereas the population that remains excited is called real1-4. Virtual charge carriers have recently been associated with high-harmonic generation and transient absorption5-8, but photocurrent generation may stem from real as well as virtual charge carriers9-14. However, a link between the generation of the carrier types and their importance for observables of technological relevance is missing. Here we show that real and virtual charge carriers can be excited and disentangled in the optical generation of currents in a gold-graphene-gold heterostructure using few-cycle laser pulses. Depending on the waveform used for photoexcitation, real carriers receive net momentum and propagate to the gold electrodes, whereas virtual carriers generate a polarization response read out at the gold-graphene interfaces. On the basis of these insights, we further demonstrate a proof of concept of a logic gate for future lightwave electronics. Our results offer a direct means to monitor and excite real and virtual charge carriers. Individual control over each type of carrier will markedly increase the integrated-circuit design space and bring petahertz signal processing closer to reality15,16.

4.
Nano Lett ; 21(22): 9403-9409, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34735774

RESUMEN

Electronic coherence is of utmost importance for the access and control of quantum-mechanical solid-state properties. Using a purely electronic observable, the photocurrent, we measure a lower bound of the electronic coherence time of 22 ± 4 fs in graphene. The photocurrent is ideally suited to measure electronic coherence, as it is a direct result of coherent quantum-path interference, controlled by the delay between two ultrashort two-color laser pulses. The maximum delay for which interference between the population amplitude injected by the first pulse interferes with that generated by the second pulse determines the electronic coherence time. In particular, numerical simulations reveal that the experimental data yields a lower bound on the electronic coherence time, masked by coherent dephasing due to the broadband absorption in graphene. We expect that our results will significantly advance the understanding of coherent quantum control in solid-state systems ranging from excitation with weak fields to strongly driven systems.

5.
Stem Cell Reports ; 15(1): 214-225, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32559457

RESUMEN

Induced pluripotent stem cells (iPSCs) from diverse humans offer the potential to study human functional variation in controlled culture environments. A portion of this variation originates from an ancient admixture between modern humans and Neandertals, which introduced alleles that left a phenotypic legacy on individual humans today. Here, we show that a large iPSC repository harbors extensive Neandertal DNA, including alleles that contribute to human phenotypes and diseases, encode hundreds of amino acid changes, and alter gene expression in specific tissues. We provide a database of the inferred introgressed Neandertal alleles for each individual iPSC line, together with the annotation of the predicted functional variants. We also show that transcriptomic data from organoids generated from iPSCs can be used to track Neandertal-derived RNA over developmental processes. Human iPSC resources provide an opportunity to experimentally explore Neandertal DNA function and its contribution to present-day phenotypes, and potentially study Neandertal traits.


Asunto(s)
ADN/genética , Hombre de Neandertal/genética , Células Madre/metabolismo , Alelos , Animales , Encéfalo/metabolismo , Línea Celular , Haplotipos/genética , Humanos , Fenotipo , Células Madre Pluripotentes/citología , ARN/metabolismo , Células Madre/citología
6.
Opt Lett ; 44(20): 5005-5008, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31613249

RESUMEN

In this Letter, we report the generation of a femtosecond supercontinuum extending from the ultraviolet to the near-infrared spectrum and detection of its carrier-envelope-phase (CEP) variation by f-to-2f interferometry. The spectrum is generated in a gas-filled hollow-core photonic crystal fiber, where soliton dynamics allows the CEP-stable self-compression of the optical parametric chirped-pulse amplifier pump pulses at 800 nm to a duration of 1.7 optical cycles, followed by dispersive wave emission. The source provides up to 1 µJ of pulse energy at the 800 kHz repetition rate, resulting in 0.8 W of average power, and it can be extremely useful, for example in strong-field physics, pump-probe measurements, and ultraviolet frequency comb metrology.

7.
Phys Rev Lett ; 121(20): 207401, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30500256

RESUMEN

We investigate coherent electron dynamics in graphene, interacting with the electric field waveform of two orthogonally polarized, few-cycle laser pulses. Recently, we demonstrated that linearly polarized driving pulses lead to sub-optical-cycle Landau-Zener quantum path interference by virtue of the combination of intraband motion and interband transition [Higuchi et al., Nature 550, 224 (2017)NATUAS0028-083610.1038/nature23900]. Here we introduce a pulsed control laser beam, orthogonally polarized to the driving pulses, and observe the ensuing electron dynamics. The relative delay between the two pulses is a tuning parameter to control the electron trajectory, now in a complex fashion exploring the full two-dimensional reciprocal space in graphene. Depending on the relative phase, the electron trajectory in the reciprocal space can, e.g., be deformed to suppress the quantum path interference resulting from the driving laser pulse. Intriguingly, this strong-field-based complex matter wave manipulation in a two-dimensional conductor is driven by a high repetition rate laser oscillator, rendering unnecessary complex and expensive amplified laser systems.

8.
Nature ; 550(7675): 224-228, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-28953882

RESUMEN

The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10-15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10-18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in graphene take place on a hitherto unexplored timescale, faster than electron-electron scattering (tens of femtoseconds) and electron-phonon scattering (hundreds of femtoseconds). We expect these results to have direct ramifications for band-structure tomography and light-field-driven petahertz electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...