Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phycol ; 56(2): 507-520, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31876286

RESUMEN

The underwater light field of lakes, estuaries, and oceans may vary greatly in spectral composition. Phytoplankton in these environments must contain pigments that absorb the available colors of light. If spectral quality changes, acclimation to the new spectral environment would confer an ecological advantage in terms of photosynthesis and growth. Here, we explored the capacity of eight marine cryptophytes to adjust pigmentation in response to changes in spectral irradiance and related effects on light absorption, photosynthetically useable radiation (PUR), and growth rate. The pigment composition of all species changed in some way in response to shifts in spectral irradiance, but not all pigment changes could be considered advantageous in the context of chromatic acclimation. For most species, absorption by chl-a and chl-c2 resulted in highest absorption in the blue region, highest PUR values for blue-light grown cells, and highest growth rates in blue light. The exception was Chroomonas mesostigmatica (CCMP 1168), which contains a high percentage of Cryptophyte-Phycocyanin (Cr-PC) 645, absorbs strongly in the orange-to-red region of the spectrum, and grew fastest under red light. The position and magnitude of the maximum and secondary absorption peak of Cr-PC 569, the phycobiliprotein pigment of Hemiselmis cryptochromatica, varied with spectral irradiance. The underlying cause remains unknown, but may represent a mechanism by which cryptophytes optimize photon capture.


Asunto(s)
Criptófitas , Fotosíntesis , Aclimatación , Clorofila/metabolismo , Fitoplancton/metabolismo , Pigmentación
2.
J Phycol ; 55(3): 552-564, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30468692

RESUMEN

Phenotypic traits associated with light capture and phylogenetic relationships were characterized in 34 strains of diversely pigmented marine and freshwater cryptophytes. Nuclear SSU and partial LSU rDNA sequence data from 33 of these strains plus an additional 66 strains produced a concatenated rooted maximum likelihood tree that classified the strains into 7 distinct clades. Molecular and phenotypic data together support: (i) the reclassification of Cryptomonas irregularis NIES 698 to the genus Rhodomonas, (ii) revision of phycobiliprotein (PBP) diversity within the genus Hemiselmis to include cryptophyte phycocyanin (Cr-PC) 569, (iii) the inclusion of previously unidentified strain CCMP 2293 into the genus Falcomonas, even though it contains cryptophyte phycoerythrin 545 (Cr-PE 545), and (iv) the inclusion of previously unidentified strain CCMP 3175, which contains Cr-PE 545, in a clade with PC-containing Chroomonas species. A discriminant analysis-based model of group membership correctly predicted 70.6% of the clades using three traits: PBP concentration · cell-1 , the wavelength of PBP maximal absorption, and habitat. Non-PBP pigments (alloxanthin, chl-a, chl-c2 , α-carotene) did not contribute significantly to group classification, indicating the potential plasticity of these pigments and the evolutionary conservation of the PBPs. Pigment data showed evidence of trade-offs in investments in PBPs vs. chlorophylls (a +c2 ).


Asunto(s)
Criptófitas , Agua Dulce , ADN Ribosómico , Ficocianina , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...