Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Cell Biol ; 94(7-9): 280-91, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26099175

RESUMEN

Mitochondria have been derived from alpha-bacterial endosymbionts during the evolution of eukaryotes. Numerous bacterial functions have been maintained inside the organelles including fatty acid degradation, citric acid cycle, oxidative phosphorylation, and the synthesis of heme or lipoic acid cofactors. Additionally, mitochondria have inherited the bacterial iron-sulfur cluster assembly (ISC) machinery. Many of the ISC components are essential for cell viability because they generate a still unknown, sulfur-containing compound for the assembly of cytosolic and nuclear Fe/S proteins that perform important functions in, e.g., protein translation, DNA synthesis and repair, and chromosome segregation. The sulfur-containing compound is exported by the mitochondrial ABC transporter Atm1 (human ABCB7) and utilized by components of the cytosolic iron-sulfur protein assembly (CIA) machinery. An appealing minimal model for the striking compartmentation of eukaryotic Fe/S protein biogenesis is provided by organisms that contain mitosomes instead of mitochondria. Mitosomes have been derived from mitochondria by reductive evolution, during which they have lost virtually all classical mitochondrial tasks. Nevertheless, mitosomes harbor all core ISC components which presumably have been maintained for assisting the maturation of cytosolic-nuclear Fe/S proteins. The current review is centered around the Atm1 export process. We present an overview on the mitochondrial requirements for the export reaction, summarize recent insights into the 3D structure and potential mechanism of Atm1, and explain how the CIA machinery uses the mitochondrial export product for the assembly of cytosolic and nuclear Fe/S proteins.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Citosol/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismo , Transporte de Proteínas/fisiología
2.
Nat Commun ; 5: 5013, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25358379

RESUMEN

Maturation of iron-sulphur (Fe/S) proteins involves complex biosynthetic machinery. In vivo synthesis of [2Fe-2S] clusters on the mitochondrial scaffold protein Isu1 requires the cysteine desulphurase complex Nfs1-Isd11, frataxin, ferredoxin Yah1 and its reductase Arh1. The roles of Yah1-Arh1 have remained enigmatic, because they are not required for in vitro Fe/S cluster assembly. Here, we reconstitute [2Fe-2S] cluster synthesis on Isu1 in a reaction depending on Nfs1-Isd11, frataxin, Yah1, Arh1 and NADPH. Unlike in the bacterial system, frataxin is an essential part of Fe/S cluster biosynthesis and is required simultaneously and stoichiometrically to Yah1. Reduced but not oxidized Yah1 tightly interacts with apo-Isu1 indicating a dynamic interaction between Yah1-apo-Isu1. Nuclear magnetic resonance structural studies identify the Yah1-apo-Isu1 interaction surface and suggest a pathway for electron flow from reduced ferredoxin to Isu1. Together, our study defines the molecular function of the ferredoxin Yah1 and its human orthologue FDX2 in mitochondrial Fe/S cluster synthesis.


Asunto(s)
Adrenodoxina/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adrenodoxina/química , Biocatálisis , Chaetomium , Escherichia coli , Ferredoxina-NADP Reductasa/metabolismo , Ferredoxinas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Sulfurtransferasas/metabolismo
3.
Biochem J ; 441(3): 823-32, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22004669

RESUMEN

The Moco (molybdenum cofactor) sulfurase ABA3 from Arabidopsis thaliana catalyses the sulfuration of the Moco of aldehyde oxidase and xanthine oxidoreductase, which represents the final activation step of these enzymes. ABA3 consists of an N-terminal NifS-like domain that exhibits L-cysteine desulfurase activity and a C-terminal domain that binds sulfurated Moco. The strictly conserved Cys430 in the NifS-like domain binds a persulfide intermediate, which is abstracted from the substrate L-cysteine and finally needs to be transferred to the Moco of aldehyde oxidase and xanthine oxidoreductase. In addition to Cys4³°, another eight cysteine residues are located in the NifS-like domain, with two of them being highly conserved among Moco sulfurase proteins and, at the same time, being in close proximity to Cys4³°. By determination of the number of surface-exposed cysteine residues and the number of persulfide-binding cysteine residues in combination with the sequential substitution of each of the nine cysteine residues, a second persulfide-binding cysteine residue, Cys²°6, was identified. Furthermore, the active-site Cys4³° was found to be located on top of a loop structure, formed by the two flanking residues Cys4²8 and Cys4³5, which are likely to form an intramolecular disulfide bridge. These findings are confirmed by a structural model of the NifS-like domain, which indicates that Cys4²8 and Cys4³5 are within disulfide bond distance and that a persulfide transfer from Cys4³° to Cys²°6 is indeed possible.


Asunto(s)
Proteínas de Arabidopsis , Proteínas Bacterianas/química , Cisteína/aislamiento & purificación , Disulfuros/metabolismo , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Sulfuros/metabolismo , Sulfurtransferasas , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dominio Catalítico/genética , Coenzimas/química , Coenzimas/metabolismo , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Humanos , Metaloproteínas/química , Metaloproteínas/metabolismo , Modelos Biológicos , Modelos Moleculares , Cofactores de Molibdeno , Mutagénesis Sitio-Dirigida/métodos , Unión Proteica/genética , Dominios y Motivos de Interacción de Proteínas/genética , Pteridinas/química , Pteridinas/metabolismo , Homología de Secuencia , Relación Estructura-Actividad , Sulfurtransferasas/química , Sulfurtransferasas/genética , Sulfurtransferasas/metabolismo
4.
J Biol Chem ; 283(15): 9642-50, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18258600

RESUMEN

The molybdenum cofactor sulfurase ABA3 from Arabidopsis thaliana is needed for post-translational activation of aldehyde oxidase and xanthine dehydrogenase by transferring a sulfur atom to the desulfo-molybdenum cofactor of these enzymes. ABA3 is a two-domain protein consisting of an NH(2)-terminal NifS-like cysteine desulfurase domain and a C-terminal domain of yet undescribed function. The NH(2)-terminal domain of ABA3 decomposes l-cysteine to yield elemental sulfur, which subsequently is bound as persulfide to a conserved protein cysteinyl residue within this domain. In vivo, activation of aldehyde oxidase and xanthine dehydrogenase also depends on the function of the C-terminal domain, as can be concluded from the A. thaliana aba3/sir3-3 mutant. sir3-3 plants are strongly reduced in aldehyde oxidase and xanthine dehydrogenase activities due to a substitution of arginine 723 by a lysine within the C-terminal domain of the ABA3 protein. Here we present first evidence for the function of the C-terminal domain and show that molybdenum cofactor is bound to this domain with high affinity. Furthermore, cyanide-treated ABA3 C terminus was shown to release thiocyanate, indicating that the molybdenum cofactor bound to the C-terminal domain is present in the sulfurated form. Co-incubation of partially active aldehyde oxidase and xanthine dehydrogenase with ABA3 C terminus carrying sulfurated molybdenum cofactor resulted in stimulation of aldehyde oxidase and xanthine dehydrogenase activity. The data of this work suggest that the C-terminal domain of ABA3 might act as a scaffold protein where prebound desulfo-molybdenum cofactor is converted into sulfurated cofactor prior to activation of aldehyde oxidase and xanthine dehydrogenase.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Coenzimas/metabolismo , Molibdeno/metabolismo , Azufre/metabolismo , Sulfurtransferasas/metabolismo , Aldehído Oxidasa/genética , Aldehído Oxidasa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cisteína/metabolismo , Activación Enzimática/fisiología , Mutación , Estructura Terciaria de Proteína/fisiología , Sulfuros/metabolismo , Sulfurtransferasas/genética , Xantina Deshidrogenasa/genética , Xantina Deshidrogenasa/metabolismo
5.
J Biol Chem ; 280(6): 4213-8, 2005 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-15561708

RESUMEN

The molybdenum cofactor sulfurase ABA3 from Arabidopsis thaliana specifically regulates the activity of the molybdenum enzymes aldehyde oxidase and xanthine dehydrogenase by converting their molybdenum cofactor from the desulfo-form into the sulfo-form. ABA3 is a two-domain protein with an NH2-terminal domain sharing significant similarities to NifS proteins that catalyze the decomposition of l-cysteine to l-alanine and elemental sulfur for iron-sulfur cluster synthesis. Although different in its physiological function, the mechanism of ABA3 for sulfur mobilization was found to be similar to NifS proteins. The protein binds a pyridoxal phosphate cofactor and a substrate-derived persulfide intermediate, and site-directed mutagenesis of strictly conserved binding sites for the cofactor and the persulfide demonstrated that they are essential for molybdenum cofactor sulfurase activity. In vitro, the NifS-like domain of ABA3 activates aldehyde oxidase and xanthine dehydrogenase in the absence of the C-terminal domain, but in vivo, the C-terminal domain is required for proper activation of both target enzymes. In addition to its cysteine desulfurase activity, ABA3-NifS also exhibits selenocysteine lyase activity. Although l-selenocysteine is unlikely to be a natural substrate for ABA3, it is decomposed more efficiently than l-cysteine. Besides mitochondrial AtNFS1 and plastidial AtNFS2, which are both proposed to be involved in iron-sulfur cluster formation, ABA3 is proposed to be a third and cytosolic NifS-like cysteine desulfurase in A. thaliana. However, the sulfur transferase activity of ABA3 is used for post-translational activation of molybdenum enzymes rather than for iron-sulfur cluster assembly.


Asunto(s)
Arabidopsis/metabolismo , Coenzimas/química , Metaloproteínas/química , Molibdeno/química , Pteridinas/química , Sulfurtransferasas/química , Aldehído Oxidasa/metabolismo , Proteínas de Arabidopsis , Proteínas Bacterianas/química , Sitios de Unión , Catálisis , Cisteína/química , Citosol/química , Colorantes Fluorescentes/farmacología , Vectores Genéticos , Proteínas Hierro-Azufre/química , Cinética , Liasas/química , Lisina/química , Cofactores de Molibdeno , Mutagénesis Sitio-Dirigida , Naftalenosulfonatos/farmacología , Pichia/metabolismo , Proteínas de Plantas/química , Unión Proteica , Estructura Terciaria de Proteína , Fosfato de Piridoxal/química , Selenocisteína/química , Espectrofotometría , Especificidad por Sustrato , Sulfuros/química , Sulfurtransferasas/metabolismo , Xantina Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA