Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 14(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36139642

RESUMEN

The tumor suppressor protein p53 has an important role in cell-fate determination. In cancer cells, the activity of p53 is frequently repressed by high levels of MDMX and/or MDM2. MDM2 is a ubiquitin ligase whose activity results in ubiquitin- and proteasome-dependent p53 degradation, while MDMX inhibits p53-activated transcription by shielding the p53 transactivation domain. Interestingly, the oncogenic functions of MDMX appear to be more wide-spread than inhibition of p53. The present study aimed to elucidate the MDMX-controlled transcriptome. Therefore, we depleted MDMX with four distinct shRNAs from a high MDMX expressing uveal melanoma cell line and determined the effect on the transcriptome by RNAseq. Biological function analyses indicate the inhibition of the cell cycle regulatory genes and stimulation of cell death activating genes upon MDMX depletion. Although the inhibition of p53 activity clearly contributes to the transcription regulation controlled by MDMX, it appeared that the transcriptional regulation of multiple genes did not only rely on p53 expression. Analysis of gene regulatory networks indicated a role for Forkhead box (FOX) transcription factors. Depletion of FOXO proteins partly prevented the transcriptional changes upon MDMX depletion. Furthermore, depletion of FOXO proteins relatively diminished the growth inhibition upon MDMX knockdown, although the knockdown of the FOXO transcription factors also reduces cell growth. In conclusion, the p53-independent oncogenic functions of MDMX could be partially explained by its regulation of FOXO activity.

2.
ACS Chem Biol ; 14(1): 132-136, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30525429

RESUMEN

In uveal melanoma (UM) cells, the protein kinase C (pathway) is almost generally constitutively activated as a result of an activating mutation in either the GNAQ or the GNA11 G-protein. A pan-PKC inhibitor, sotrastaurin (also named AEB071), is in clinical trials for treatment of UM patients with limited success and eliciting adverse effects. Interestingly, genetic interference with expression of just one PKC isoform, e.g., PKCδ, is sufficient to reduce UM cell proliferation. Therefore, we tested the effect of a recently described specific PKCδ inhibitor, B106, on growth and survival of UM cell lines. Surprisingly, we found that B106 efficiently induced apoptosis in several cell lines, but apparently independent of activated PKCδ.


Asunto(s)
Carbazoles/farmacología , Cromanos/farmacología , Proteína Quinasa C-delta/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias de la Úvea/patología , Activación Enzimática , Humanos , Proteína Quinasa C-delta/metabolismo , Neoplasias de la Úvea/enzimología
3.
J Pathol ; 245(4): 433-444, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29732557

RESUMEN

Malignant melanoma of the conjunctiva (CM) is an uncommon but potentially deadly disorder. Many malignancies show an increased activity of the epigenetic modifier enhancer of zeste homolog 2 (EZH2). We studied whether EZH2 is expressed in CM, and whether it may be a target for therapy in this malignancy. Immunohistochemical analysis showed that EZH2 protein expression was absent in normal conjunctival melanocytes and primary acquired melanosis, while EZH2 was highly expressed in 13 (50%) of 26 primary CM and seven (88%) of eight lymph node metastases. Increased expression was positively associated with tumour thickness (p =0.03). Next, we targeted EZH2 with specific inhibitors (GSK503 and UNC1999) or depleted EZH2 by stable shRNA knockdown in three primary CM cell lines. Both pharmacological and genetic inactivation of EZH2 inhibited cell growth and colony formation and influenced EZH2-mediated gene transcription and cell cycle profile in vitro. The tumour suppressor gene p21/CDKN1A was especially upregulated in CM cells after EZH2 knockdown in CM cells. Additionally, the potency of GSK503 against CM cells was monitored in zebrafish xenografts. GSK503 profoundly attenuated tumour growth in CM xenografts at a well-tolerated concentration. Our results indicate that elevated levels of EZH2 are relevant to CM tumourigenesis and progression, and that EZH2 may become a potential therapeutic target for patients with CM. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Conjuntiva/tratamiento farmacológico , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Melanoma/tratamiento farmacológico , Piridonas/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Neoplasias de la Conjuntiva/genética , Neoplasias de la Conjuntiva/metabolismo , Neoplasias de la Conjuntiva/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Melanoma/secundario , Persona de Mediana Edad , Terapia Molecular Dirigida , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven , Pez Cebra
4.
Oncotarget ; 9(5): 6174-6187, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29464063

RESUMEN

Very little to no improvement in overall survival has been seen in patients with advanced non-resectable cutaneous melanoma or metastatic uveal melanoma in decades, highlighting the need for novel therapeutic options. In this study we investigated as a potential novel therapeutic intervention for both cutaneous and uveal melanoma patients a combination of the broad spectrum HDAC inhibitor quisinostat and pan-CDK inhibitor flavopiridol. Both drugs are currently in clinical trials reducing time from bench to bedside. Combining quisinostat and flavopiridol shows a synergistic reduction in cell viability of all melanoma cell lines tested, irrespective of their driver mutations. This synergism was also observed in BRAFV600E mutant melanoma that had acquired resistance to BRAF inhibition. Mechanistically, loss of cell viability was, at least partly, due to induction of apoptotic cell death. The combination was also effectively inducing tumor regression in a preclinical setting, namely a patient-derived tumor xenograft (PDX) model of cutaneous melanoma, without increasing adverse effects. We propose that the quisinostat/flavopiridol combination is a promising therapeutic option for both cutaneous and uveal metastatic melanoma patients, independent of their mutational status or (acquired) resistance to BRAF inhibition.

5.
Oncotarget ; 8(35): 58021-58036, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28938534

RESUMEN

PURPOSE: Conjunctival melanoma (CM) is a rare but lethal form of cancer. Similar to cutaneous melanoma, CM frequently carries activating mutations in BRAF and NRAS. We studied whether CM as well as conjunctival benign and premalignant melanocytic lesions express targets in the mitogen-activated protein kinase (MAPK) and AKT pathways, and whether specific inhibitors can suppress CM growth in vitro. METHODS: 131 conjunctival lesions obtained from 129 patients were collected. The presence of BRAF V600E mutation and expression of phosphorylated (p)-ERK and p-AKT were assessed by immunohistochemistry. We studied cell proliferation, phosphorylation, cell cycling and apoptosis in three CM cell lines using two BRAF inhibitors (Vemurafenib and Dabrafenib), a MEK inhibitor (MEK162) and an AKT inhibitor (MK2206). RESULTS: The BRAF V600E mutation was present in 19% of nevi and 26% of melanomas, but not in primary acquired melanosis (PAM). Nuclear and cytoplasmic p-ERK and p-AKT were expressed in all conjunctival lesions. Both BRAF inhibitors suppressed growth of both BRAF mutant CM cell lines, but only one induced cell death. MEK162 and MK2206 inhibited proliferation of CM cells in a dose-dependent manner, and the combination of these two drugs led to synergistic growth inhibition and cell death in all CM cell lines. CONCLUSION: ERK and AKT are constitutively activated in conjunctival nevi, PAM and melanoma. While BRAF inhibitors prohibited cell growth, they were not always cytotoxic. Combining MEK and AKT inhibitors led to more growth inhibition and cell death in CM cells. The combination may benefit patients suffering from metastatic conjunctival melanoma.

6.
Clin Cancer Res ; 22(1): 96-106, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26373572

RESUMEN

PURPOSE: Antiangiogenic therapy, mostly targeting VEGF, has been applied in cancer patients for the last decade. However, resistance to anti-VEGF therapy and/or no significant benefit as monotherapeutic agent is often observed. Therefore, new antiangiogenic strategies are needed. In the current study, we investigated the therapeutic effect of interfering with the bone morphogenetic protein (BMP)9/activin receptor-like kinase (ALK)1 signaling pathway by using an ALK1-Fc ligand trap. EXPERIMENTAL DESIGN: We analyzed the potential antiangiogenic and antitumor effects of ALK1-Fc protein as monotherapy and in combination with chemotherapy in vivo in mouse models of melanoma, head and neck cancer, and invasive lobular breast carcinomas. ALK1-Fc sequesters BMP9 and 10 and prevents binding of these ligands to endothelial ALK1, which regulates angiogenesis. RESULTS: Treatment of mice with ALK1-Fc strongly decreased the tumors' microvascular density in the three different mouse cancer models. However, this effect was not accompanied by a reduction in tumor volume. An immunohistochemical analysis of the tumor samples revealed that ALK1-Fc treatment increased the pericyte coverage of the remaining tumor vessels and decreased the hypoxia within the tumor. Next, we observed that combining ALK1-Fc with cisplatin inhibited tumor growth in the breast and head and neck cancer models more efficiently than chemotherapy alone. CONCLUSIONS: The addition of ALK1-Fc to the cisplatin treatment was able to enhance the cytotoxic effect of the chemotherapy. Our results provide strong rationale to explore combined targeting of ALK1 with chemotherapy in a clinical setting, especially in the ongoing phase II clinical trials with ALK1-Fc.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/farmacología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Factor 2 de Diferenciación de Crecimiento/metabolismo , Humanos , Fragmentos Fc de Inmunoglobulinas/farmacología , Ratones , Ratones Noqueados , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neovascularización Patológica/genética , Proteínas Recombinantes de Fusión/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA