Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Microbiol Immunol Infect, v. 53, n. 1, p. 163-175, fev. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2985

RESUMEN

Background Leptospirosis is an infectious disease that affects humans and animals worldwide. The etiological agents of this disease are the pathogenic species of the genus Leptospira. The mechanisms involved in the leptospiral pathogenesis are not full understood. The elucidation of novel mediators of host-pathogen interaction is important in the detection of virulence factors involved in the pathogenesis of leptospirosis. Objective This work focused on identification and characterization of a hypothetical protein of Leptospira encoded by the gene LIC10920. Methods The protein of unknown function was predicted to be surface exposed. Therefore, the LIC10920 gene was cloned and the protein expressed in Escherichia coli BL21 (DE3) Star pLysS strain. The recombinant protein was purified by metal affinity chromatography and evaluated with leptospirosis human serum samples. The interaction with host components was also performed. Results The recombinant protein was recognized by antibodies present in leptopsirosis human serum, suggesting its expression during infection. Immunofluorescence and intact bacteria assays indicated that the bacterial protein is surface-exposed. The recombinant protein interacted with human laminin, in a dose-dependent and saturable manner and was named Lsa24.9, for Leptospiral surface adhesin, followed by its molecular mass. Lsa24.9 also binds plasminogen (PLG) in a dose-dependent and saturable fashion, fulfilling receptor ligand interaction. Moreover, Lsa24.9 has the ability to acquire PLG from normal human serum, exhibiting similar profile as observed with the human purified component. PLG bound Lsa24.9 was able of generating plasmin, which could increase the proteolytic power of the bacteria. Conclusions This novel leptospiral protein may function as an adhesin at the colonization steps and may help the invasion process by plasmin generation at the bacterial cell surface.

2.
J. Microbiol. Immunol. Infect. ; 53(1): 163-175, 2020.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17560

RESUMEN

Background Leptospirosis is an infectious disease that affects humans and animals worldwide. The etiological agents of this disease are the pathogenic species of the genus Leptospira. The mechanisms involved in the leptospiral pathogenesis are not full understood. The elucidation of novel mediators of host-pathogen interaction is important in the detection of virulence factors involved in the pathogenesis of leptospirosis. Objective This work focused on identification and characterization of a hypothetical protein of Leptospira encoded by the gene LIC10920. Methods The protein of unknown function was predicted to be surface exposed. Therefore, the LIC10920 gene was cloned and the protein expressed in Escherichia coli BL21 (DE3) Star pLysS strain. The recombinant protein was purified by metal affinity chromatography and evaluated with leptospirosis human serum samples. The interaction with host components was also performed. Results The recombinant protein was recognized by antibodies present in leptopsirosis human serum, suggesting its expression during infection. Immunofluorescence and intact bacteria assays indicated that the bacterial protein is surface-exposed. The recombinant protein interacted with human laminin, in a dose-dependent and saturable manner and was named Lsa24.9, for Leptospiral surface adhesin, followed by its molecular mass. Lsa24.9 also binds plasminogen (PLG) in a dose-dependent and saturable fashion, fulfilling receptor ligand interaction. Moreover, Lsa24.9 has the ability to acquire PLG from normal human serum, exhibiting similar profile as observed with the human purified component. PLG bound Lsa24.9 was able of generating plasmin, which could increase the proteolytic power of the bacteria. Conclusions This novel leptospiral protein may function as an adhesin at the colonization steps and may help the invasion process by plasmin generation at the bacterial cell surface.

3.
Pathog. Dis ; 74(5): Número do artigo: ftw040, 2016.
Artículo | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14445

RESUMEN

Pathogenic species of the genus Leptospira are the etiological agents of leptospirosis, the most widespread zoonosis. Mechanisms involved in leptospiral pathogenesis are not well understood. By data mining the genome sequences of Leptospira interrogans we have identified two proteins predicted to be surface exposed, LIC10821 and LIC10064. Immunofluorescence and proteinase K assays confirmed that the proteins are exposed. Reactivity of the recombinant proteins with human sera has shown that rLIC10821, but not rLIC10064, is recognized by antibodies in confirmed leptospirosis serum samples, suggesting its expression during infection. The rLIC10821 was able to bind laminin, in a dose-dependent fashion, and was called Lsa37 (leptospiral surface adhesin of 37 kDa). Studies with human plasma components demonstrated that rLIC10821 interacts with plasminogen (PLG) and fibrinogen (Fg). The binding of Lsa37 with PLG generates plasmin when PLG activator was added. Fibrin clotting reduction was observed in a thrombin-catalyzed reaction, when Fg was incubated with Lsa37, suggesting that this protein may interfere in the coagulation cascade during the disease. Although LIC10064 protein is more abundant than the corresponding Lsa37, binding activity with all the components tested was not detected. Thus, Lsa37 is a novel versatile adhesin that may mediate Leptospira-host interactions


Asunto(s)
Alergia e Inmunología , Bacteriología , Patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA