Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 24(19): e202300425, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37368451

RESUMEN

An enzyme cascade was established previously consisting of a recycling system with an l-amino acid oxidase (hcLAAO4) and a catalase (hCAT) for different α-keto acid co-substrates of (S)-selective amine transaminases (ATAs) in kinetic resolutions of racemic amines. Only 1 mol % of the co-substrate was required and l-amino acids instead of α-keto acids could be applied. However, soluble enzymes cannot be reused easily. Immobilization of hcLAAO4, hCAT and the (S)-selective ATA from Vibrio fluvialis (ATA-Vfl) was addressed here. Immobilization of the enzymes together rather than on separate beads showed higher reaction rates most likely due to fast co-substrate channeling between ATA-Vfl and hcLAAO4 due to their close proximity. Co-immobilization allowed further reduction of the co-substrate amount to 0.1 mol % most likely due to a more efficient H2 O2 -removal caused by the stabilized hCAT and its proximity to hcLAAO4. Finally, the co-immobilized enzyme cascade was reused in 3 cycles of preparative kinetic resolutions to produce (R)-1-PEA with high enantiomeric purity (97.3 %ee). Further recycling was inefficient due to the instability of ATA-Vfl, while hcLAAO4 and hCAT revealed high stability. An engineered ATA-Vfl-8M was used in the co-immobilized enzyme cascade to produce (R)-1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethanamine, an apremilast-intermediate, with a 1,000 fold lower input of the co-substrate.


Asunto(s)
Aminas , Transaminasas , Aminas/química , Transaminasas/química , L-Aminoácido Oxidasa , Enzimas Inmovilizadas/química , Catalasa , Cetoácidos
2.
Chembiochem ; 23(16): e202200329, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35713203

RESUMEN

Chiral and enantiopure amines can be produced by enantioselective transaminases via kinetic resolution of amine racemates. This transamination reaction requires stoichiometric amounts of co-substrate. A dual-enzyme recycling system overcomes this limitation: l-amino acid oxidases (LAAO) recycle the accumulating co-product of (S)-selective transaminases in the kinetic resolution of racemic amines to produce pure (R)-amines. However, availability of suitable LAAOs is limited. Here we use the heterologously produced, highly active fungal hcLAAO4 with broad substrate spectrum. H2 O2 as byproduct of hcLAAO4 is detoxified by a catalase. The final system allows using sub-stoichiometric amounts of 1 mol% of the transaminase co-substrate as well as the initial application of l-amino acids instead of α-keto acids. With an optimized protocol, the synthetic potential of this kinetic resolution cascade was proven at the preparative scale (>90 mg) by the synthesis of highly enantiomerically pure (R)-methylbenzylamine (>99 %ee) at complete conversion (50 %).


Asunto(s)
L-Aminoácido Oxidasa , Transaminasas , Aminas/química , Catálisis , Oxidorreductasas , Estereoisomerismo , Especificidad por Sustrato , Transaminasas/metabolismo
3.
Protein Expr Purif ; 186: 105918, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34044133

RESUMEN

Bone morphogenetic protein 2 (BMP21) is a highly interesting therapeutic growth factor due to its strong osteogenic/osteoinductive potential. However, its pronounced aggregation tendency renders recombinant and soluble production troublesome and complex. While prokaryotic expression systems can provide BMP2 in large amounts, the typically insoluble protein requires complex denaturation-renaturation procedures with medically hazardous reagents to obtain natively folded homodimeric BMP2. Based on a detailed aggregation analysis of wildtype BMP2, we designed a hydrophilic variant of BMP2 additionally containing an improved heparin binding site (BMP2-2Hep-7M). Consecutive optimization of BMP2-2Hep-7M expression and purification enabled production of soluble dimeric BMP2-2Hep-7M in high yield in E. coli. This was achieved by a) increasing protein hydrophilicity via introducing seven point mutations within aggregation hot spots of wildtype BMP2 and a longer N-terminus resulting in higher affinity for heparin, b) by employing E. coli strain SHuffle® T7, which enables the structurally essential disulfide-bond formation in BMP2 in the cytoplasm, c) by using BMP2 variant characteristic soluble expression conditions and application of l-arginine as solubility enhancer. The BMP2 variant BMP2-2Hep-7M shows strongly attenuated although not completely eliminated aggregation tendency.


Asunto(s)
Proteína Morfogenética Ósea 2 , Proteínas Recombinantes de Fusión , Sitios de Unión/genética , Proteína Morfogenética Ósea 2/química , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/aislamiento & purificación , Proteína Morfogenética Ósea 2/metabolismo , Escherichia coli/genética , Heparina/metabolismo , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...