Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(23): 8820-8827, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38873066

RESUMEN

Charge-shift bonds have been hypothesized as a third type of chemical bonds in addition to covalent and ionic bonds. They have first been described with valence bond theory where they are identified by the resonance energy resulting from ionic contributions. While other indicators have been described, a clear real space fingerprint for charge-shift bonding is still lacking. Probability density analysis has been developed as a real space method, allowing chemical bonding to be identified from the many-electron probability density |Ψ|2 where the wave function Ψ can be obtained from any quantum chemical method. Recently, barriers of a probability potential, which depends on this density, have proven to be good measures for delocalization and covalent bonding. In this work, we employ many examples to demonstrate that a well-suited measure for charge-shift bonding can be defined within the framework of probability density analysis. This measure correlates well with the charge-shift resonance energy from valence bond theory and thus strongly supports the charge-shift bonding concept. It is, unlike the charge-shift resonance energy, not dependent on a reference state. Moreover, it is independent of the polarity of the bond, suggesting to characterize bonds in molecules by both their polarity and their charge-shift character.

2.
Dalton Trans ; 53(7): 2973-2990, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38258473

RESUMEN

Tripodal tetradentate N donor ligands stabilise the most active ATRP catalyst systems. Here, we set out to synthesise the new guanidine ligand TMG-4NMe2uns-penp, inspired by p-substituted tris(2-pyridylmethyl)amine (TPMA) ligands. The impact of changing pyridine against guanidine donors was examined through solid state and solution experiments and density functional theory (DFT) calculations. In the solid state, the molecular structures of copper complexes based on the ligands TMG-4NMe2uns-penp, TMG-uns-penp and TMG3tren were discussed concerning the influence of a NMe2 substituent at the pyridines and the guanidine donors. In solution, the TMG-4NMe2uns-penp system was investigated by several methods, including UV/Vis, EPR and NMR spectroscopy indicating similar properties to that of the highly active TPMANMe2 system. The redox potentials were determined and related to the catalytic activity. Besides the expected trends between these and the ligand structures, there is evidence that guanidine donors in tripodal ligand systems lead to a better deactivation and possibly a faster exchange within the ATRP equilibrium than TPMA systems. Supported by DFT calculations, it derives from an easier cleavable Cu-Br bond of the copper(II) deactivator species. The high activity was stated by a controlled initiator for continuous activator regeneration (ICAR) ATRP of styrene.

3.
Dalton Trans ; 51(35): 13272-13287, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35983714

RESUMEN

Copper bromide complexes based on a series of substituted guanidine-quinolinyl and -pyridinyl ligands are reported. The ligand systems were chosen based on the large variation with regard to their flexibility in the backbone, different guanidine moieties and influence by electron density donating groups. Relationships between the molecular structures and spectroscopic and electronic properties are described. Beside the expected increase in activity by substituting the 4-position (NMe2vs. H), we showed that a higher flexibility, such as TMG vs. DMEG moiety, leads to a better stabilsiation of the copper(II) complex. Due to the correlation of the potentials and KATRP values, the catalyst based on the ligand TMGm4NMe2py is the most active copper complex for ATRP with a bidentate ligand system. The combination of the strong donating abilities of dimethylamine pyridinyl, the donor properties of the TMG substituent, and the improved flexibility due to the methylene bridging unit leads to high activity. With all NMe2-substituted systems standard ATRP experiments were conducted and with more active NMe2-substituted pyridinyl systems, ICAR ATRP experiments of styrene were conducted. Low dispersities and ideal molar masses have been achieved.


Asunto(s)
Cobre , Guanidinas , Catálisis , Cobre/química , Ligandos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA