Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Europace ; 26(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38743765

RESUMEN

Imaging using cardiac computed tomography (CT) or magnetic resonance (MR) imaging has become an important option for anatomic and substrate delineation in complex atrial fibrillation (AF) and ventricular tachycardia (VT) ablation procedures. Computed tomography more common than MR has been used to detect procedure-associated complications such as oesophageal, cerebral, and vascular injury. This clinical consensus statement summarizes the current knowledge of CT and MR to facilitate electrophysiological procedures, the current value of real-time integration of imaging-derived anatomy, and substrate information during the procedure and the current role of CT and MR in diagnosing relevant procedure-related complications. Practical advice on potential advantages of one imaging modality over the other is discussed for patients with implanted cardiac rhythm devices as well as for planning, intraprocedural integration, and post-interventional management in AF and VT ablation patients. Establishing a team of electrophysiologists and cardiac imaging specialists working on specific details of imaging for complex ablation procedures is key. Cardiac magnetic resonance (CMR) can safely be performed in most patients with implanted active cardiac devices. Standard procedures for pre- and post-scanning management of the device and potential CMR-associated device malfunctions need to be in place. In VT patients, imaging-specifically MR-may help to determine scar location and mural distribution in patients with ischaemic and non-ischaemic cardiomyopathy beyond evaluating the underlying structural heart disease. Future directions in imaging may include the ability to register multiple imaging modalities and novel high-resolution modalities, but also refinements of imaging-guided ablation strategies are expected.


Asunto(s)
Consenso , Imagen por Resonancia Magnética , Tomografía Computarizada por Rayos X , Humanos , Ablación por Catéter , Técnicas Electrofisiológicas Cardíacas , Taquicardia Ventricular/cirugía , Taquicardia Ventricular/diagnóstico por imagen , Fibrilación Atrial/cirugía , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/fisiopatología , Valor Predictivo de las Pruebas , Europa (Continente) , Resultado del Tratamiento
2.
Europace ; 26(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38584423

RESUMEN

Electrical storm (ES) is a state of electrical instability, manifesting as recurrent ventricular arrhythmias (VAs) over a short period of time (three or more episodes of sustained VA within 24 h, separated by at least 5 min, requiring termination by an intervention). The clinical presentation can vary, but ES is usually a cardiac emergency. Electrical storm mainly affects patients with structural or primary electrical heart disease, often with an implantable cardioverter-defibrillator (ICD). Management of ES requires a multi-faceted approach and the involvement of multi-disciplinary teams, but despite advanced treatment and often invasive procedures, it is associated with high morbidity and mortality. With an ageing population, longer survival of heart failure patients, and an increasing number of patients with ICD, the incidence of ES is expected to increase. This European Heart Rhythm Association clinical consensus statement focuses on pathophysiology, clinical presentation, diagnostic evaluation, and acute and long-term management of patients presenting with ES or clustered VA.


Asunto(s)
Desfibriladores Implantables , Insuficiencia Cardíaca , Taquicardia Ventricular , Humanos , Factores de Riesgo , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/terapia , Incidencia , Insuficiencia Cardíaca/complicaciones , Asia/epidemiología , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/terapia , Taquicardia Ventricular/complicaciones
3.
Acta Physiol (Oxf) ; 240(4): e14124, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38436094

RESUMEN

AIM: Exercise intolerance is the central symptom in patients with heart failure with preserved ejection fraction. In the present study, we investigated the adrenergic reserve both in vivo and in cardiomyocytes of a murine cardiometabolic HFpEF model. METHODS: 12-week-old male C57BL/6J mice were fed regular chow (control) or a high-fat diet and L-NAME (HFpEF) for 15 weeks. At 27 weeks, we performed (stress) echocardiography and exercise testing and measured the adrenergic reserve and its modulation by nitric oxide and reactive oxygen species in left ventricular cardiomyocytes. RESULTS: HFpEF mice (preserved left ventricular ejection fraction, increased E/e', pulmonary congestion [wet lung weight/TL]) exhibited reduced exercise capacity and a reduction of stroke volume and cardiac output with adrenergic stress. In ventricular cardiomyocytes isolated from HFpEF mice, sarcomere shortening had a higher amplitude and faster relaxation compared to control animals. Increased shortening was caused by a shift of myofilament calcium sensitivity. With addition of isoproterenol, there were no differences in sarcomere function between HFpEF and control mice. This resulted in a reduced inotropic and lusitropic reserve in HFpEF cardiomyocytes. Preincubation with inhibitors of nitric oxide synthases or glutathione partially restored the adrenergic reserve in cardiomyocytes in HFpEF. CONCLUSION: In this murine HFpEF model, the cardiac output reserve on adrenergic stimulation is impaired. In ventricular cardiomyocytes, we found a congruent loss of the adrenergic inotropic and lusitropic reserve. This was caused by increased contractility and faster relaxation at rest, partially mediated by nitro-oxidative signaling.


Asunto(s)
Insuficiencia Cardíaca , Función Ventricular Izquierda , Humanos , Masculino , Animales , Ratones , Volumen Sistólico , Función Ventricular Izquierda/fisiología , Adrenérgicos , Modelos Animales de Enfermedad , Óxido Nítrico , Ratones Endogámicos C57BL
4.
J Am Coll Cardiol ; 83(1): 47-59, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38171710

RESUMEN

BACKGROUND: The lack of disease-modifying drugs is one of the major unmet needs in patients with heart failure (HF). Peptides are highly selective molecules with the potential to act directly on cardiomyocytes. However, a strategy for effective delivery of therapeutics to the heart is lacking. OBJECTIVES: In this study, the authors sought to assess tolerability and efficacy of an inhalable lung-to-heart nano-in-micro technology (LungToHeartNIM) for cardiac-specific targeting of a mimetic peptide (MP), a first-in-class for modulating impaired L-type calcium channel (LTCC) trafficking, in a clinically relevant porcine model of HF. METHODS: Heart failure with reduced ejection fraction (HFrEF) was induced in Göttingen minipigs by means of tachypacing over 6 weeks. In a setting of overt HFrEF (left ventricular ejection fraction [LVEF] 30% ± 8%), animals were randomized and treatment was started after 4 weeks of tachypacing. HFrEF animals inhaled either a dry powder composed of mannitol-based microparticles embedding biocompatible MP-loaded calcium phosphate nanoparticles (dpCaP-MP) or the LungToHeartNIM only (dpCaP without MP). Efficacy was evaluated with the use of echocardiography, invasive hemodynamics, and biomarker assessment. RESULTS: DpCaP-MP inhalation restored systolic function, as shown by an absolute LVEF increase over the treatment period of 17% ± 6%, while reversing cardiac remodeling and reducing pulmonary congestion. The effect was recapitulated ex vivo in cardiac myofibrils from treated HF animals. The treatment was well tolerated, and no adverse events occurred. CONCLUSIONS: The overall tolerability of LungToHeartNIM along with the beneficial effects of the LTCC modulator point toward a game-changing treatment for HFrEF patients, also demonstrating the effective delivery of a therapeutic peptide to the diseased heart.


Asunto(s)
Insuficiencia Cardíaca , Animales , Enfermedad Crónica , Pulmón , Péptidos , Volumen Sistólico , Porcinos , Porcinos Enanos , Función Ventricular Izquierda
5.
Diagnostics (Basel) ; 13(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37892098

RESUMEN

Marfan syndrome (MFS) is an autosomal-dominant multisystem connective tissue disorder that is based on mutations in the FBN1 gene and variably affects different organs, including the heart. In this study, we investigated cardiac function with a focus on the left atrium (LA) in a relatively large cohort of patients with MFS. After screening of 1165 patients that had been examined in our center between 2016 and 2020, 231 adult MFS patients with and without aortic operation were included in our study and compared to a healthy control group (n = 106). Cardiac function was assessed by transthoracic echocardiography and NT-proBNP was used as a secretory marker. Most (94.8%) of the patients received genetic testing. Left ventricular function was within normal ranges and not impaired. Interestingly, we found that LA size and secretory activity were increased in MFS patients, despite normal left ventricular filling pressures. This finding was even more pronounced in MFS patients with prior aortic surgery. A correlation between LA size or NT-proBNP levels and the type of pathogenic FBN1 variant could not be identified. Right ventricular function and right atrial size were increased only in MFS patients that had undergone aortic surgery. In conclusion, these findings suggest that MFS leads to structural changes in the LA that are not solely resulting from left ventricular dysfunction, but probably can be considered a primary pathology of MFS.

6.
Am J Physiol Heart Circ Physiol ; 325(4): H729-H738, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37594484

RESUMEN

Atrial contractility and functional reserve in atrial remodeling (AR) without (AR/-AF) or with atrial fibrillation (AR/+AF) are not well characterized. In this study, functional measurements were performed in right atrial muscle strips (n = 71) obtained from patients (N = 22) undergoing routine cardiac surgery with either no AR [left atrial (LA) diameter < 40 mm and no history of AF (hAF)], AR/-AF (LA diameter ≥ 40 mm, no hAF), or AR/+AF (hAF and LA diameter ≥ 40 mm or LAEF < 45%). AR/-AF and AR/+AF were associated with a prolongation of half-time-to-peak (HTTP, P < 0.001) and time-to-peak (TTP) contraction (P < 0.01) when compared with no AR. This effect was seen at baseline and during ß-adrenergic stimulation with isoproterenol (Iso). Early relaxation assessed by half-relaxation time (HRT) was prolonged in AR/-AF (P = 0.03) but not in AR/+AF when compared with no AR at baseline, but this delay in relaxation in AR/-AF was attenuated with Iso. Late relaxation (τ) did not differ between AR/-AF and no AR but was consistently shorter in AR/+AF than no AR before (P = 0.04) and during Iso (P = 0.01), indicating accelerated late relaxation in AR/+AF. Relative force increase during Iso was higher (P = 0.01) and more dispersed (P = 0.047) in patients with AR/+AF. Relative adrenergic response was unaltered in the myocardium of patients with AR/-AF and AR/+AF. In conclusion, AR/-AF and AR/+AF are associated with changes in myocardial inotropic reserve and contractility. The changes are particularly pronounced in patients with AR/+AF, suggesting that the progression from AR/-AF to AR/+AF is associated with progressive alterations in atrial function that may contribute to arrhythmogenesis.NEW & NOTEWORTHY Mechanical alterations in atrial remodeling without (AR/-AF) and with atrial fibrillation (AR/+AF) have not been studied in detail in human atrial tissue preparations. To our knowledge, this is the first study to compare the mechanical phenotype and inotropic reserve in human atrial myocardial preparations from patients with no atrial remodeling, AR/-AF, and AR/+AF. We identify specific patterns of contractile dysfunction and heterogeneity for both, AR/-AF and AR/+AF, indicating the progression of atrial disease.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Humanos , Atrios Cardíacos , Isoproterenol/farmacología , Miocardio , Adrenérgicos , Fenotipo
7.
Front Cardiovasc Med ; 9: 859014, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865376

RESUMEN

Background: Although the angiotensin receptor-neprilysin inhibitor (ARNI) sacubitril/valsartan started a new era in heart failure (HF) treatment, less is known about the tissue-level effects of the drug on the atrial myocardial functional reserve and arrhythmogenesis. Methods and Results: Right atrial (RA) biopsies were retrieved from patients (n = 42) undergoing open-heart surgery, and functional experiments were conducted in muscle strips (n = 101). B-type natriuretic peptide (BNP) did not modulate systolic developed force in human myocardium during ß-adrenergic stimulation, but it significantly reduced diastolic tension (p < 0.01) and the probability of arrhythmias (p < 0.01). In addition, patient's plasma NTproBNP positively correlated with isoproterenol-induced contractile reserve in atrial tissue in vitro (r = 0.65; p < 0.01). Sacubitrilat+valsartan (Sac/Val) did not show positive inotropic effects on atrial trabeculae function but reduced arrhythmogeneity. Atrial and ventricular biopsies from patients with end-stage HF (n = 10) confirmed that neprilysin (NEP) is equally expressed in human atrial and ventricular myocardium. RA NEP expression correlates positively with RA ejection fraction (EF) (r = 0.806; p < 0.05) and left ventricle (LV) NEP correlates inversely with left atrial (LA) volume (r = -0.691; p < 0.05). Conclusion: BNP ameliorates diastolic tension during adrenergic stress in human atrial myocardium and may have positive long-term effects on the inotropic reserve. BNP and Sac/Val reduce atrial arrhythmogeneity during adrenergic stress in vitro. Myocardial NEP expression is downregulated with declining myocardial function, suggesting a compensatory mechanism in HF.

8.
Herz ; 47(4): 308-323, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35767073

RESUMEN

Heart failure (HF) with preserved ejection fraction (HFpEF) is a multi-organ, systemic syndrome that involves multiple cardiac and extracardiac pathophysiologic abnormalities. Because HFpEF is a heterogeneous syndrome and resistant to a "one-size-fits-all" approach it has proven to be very difficult to treat. For this reason, several research groups have been working on methods for classifying HFpEF and testing targeted therapeutics for the HFpEF subtypes identified. Apart from conventional classification strategies based on comorbidity, etiology, left ventricular remodeling, and hemodynamic subtypes, researchers have been combining deep phenotyping with innovative analytical strategies (e.g., machine learning) to classify HFpEF into therapeutically homogeneous subtypes over the past few years. Despite the growing excitement for such approaches, there are several potential pitfalls to their use, and there is a pressing need to follow up on data-driven HFpEF subtypes in order to determine their underlying mechanisms and molecular basis. Here we provide a framework for understanding the phenotype-based approach to HFpEF by reviewing (1) the historical context of HFpEF; (2) the current HFpEF paradigm of comorbidity-induced inflammation and endothelial dysfunction; (3) various methods of sub-phenotyping HFpEF; (4) comorbidity-based classification and treatment of HFpEF; (5) machine learning approaches to classifying HFpEF; (6) examples from HFpEF clinical trials; and (7) the future of phenomapping (machine learning and other advanced analytics) for the classification of HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/terapia , Hemodinámica , Humanos , Fenotipo , Volumen Sistólico , Síndrome , Función Ventricular Izquierda , Remodelación Ventricular/fisiología
9.
Europace ; 24(2): 313-330, Feb. 2022. graf, ilus, tab
Artículo en Inglés | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1352856

RESUMEN

Abstract We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (I) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (I) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording modes, (ii) impact of recording technologies on EGM morphology, (iii) global or local mapping using various types of EGM involving signal processing techniques including isochronal-, voltage- fractionation-, dipole density-, and rotor mapping, enabling derivation of parameters like atrial rate, entropy, conduction velocity/direction, (iv) value of epicardial and optical mapping, (v) AF detection by cardiac implantable electronic devices containing various detection algorithms applicable to stored EGMs, (vi) contribution of machine learning (ML) to further improvement of signals processing technologies. Recording and processing of EGM (or ECG) are the cornerstones of (body surface) mapping of AF. Currently available AF recording and processing technologies are mainly restricted to specific applications or have technological limitations. Improvements in AF mapping by obtaining highest fidelity source signals (e. g. catheter­electrode combinations) for signal processing (e. g. filtering, digitization, and noise elimination) is of utmost importance. Novel acquisition instruments (multi-polar catheters combined with improved physical modelling and ML techniques) will enable enhanced and automated interpretation of EGM recordings in the near future.


Asunto(s)
Fibrilación Atrial , Electrocardiografía , Aprendizaje Automático , Frecuencia Cardíaca
10.
Heart Rhythm ; 19(3): 372-380, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34767986

RESUMEN

BACKGROUND: Recent case reports and small studies have reported activation of the magnet-sensitive switches in cardiovascular implantable electronic devices (CIEDs) by the new iPhone 12 series, initiating asynchronous pacing in pacemakers and suspension of antitachycardia therapies in implantable cardioverter-defibrillators (ICDs). OBJECTIVE: The purpose of this prospective single-center observational study was to quantify the risk of magnetic field interactions of the iPhone 12 with CIEDs. METHODS: A representative model of each CIED series from all manufacturers was tested ex vivo. Incidence and minimum distance necessary for magnet mode triggering were analyzed in 164 CIED patients with either the front or the back of the phone facing the device. The magnetic field of the iPhone 12 was analyzed using a 3-axis Hall probe. RESULTS: Ex vivo, magnetic interference occurred in 84.6% with the back compared to 46.2% with the front of the iPhone 12 facing the CIED. In vivo, activation of the magnet-sensitive switch occurred in 30 CIED patients (18.3%; 21 pacemaker, 9 ICD) when the iPhone 12 was placed in close proximity over the CIED pocket and the back of the phone was facing the skin. Multiple binary logistic regression analysis identified implantation depth (95% confidence interval 0.02-0.24) as an independent predictor of magnet-sensitive switch activation. CONCLUSION: Magnetic field interactions occur only in close proximity and with precise alignment of the iPhone 12 and CIEDs. It is important to advise CIED patients to not put the iPhone 12 directly on the skin above the CIED. Further recommendations are not necessary.


Asunto(s)
Desfibriladores Implantables , Marcapaso Artificial , Desfibriladores Implantables/efectos adversos , Electrónica , Humanos , Campos Magnéticos , Imanes , Marcapaso Artificial/efectos adversos , Estudios Prospectivos
11.
Europace ; 24(2): 313-330, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34878119

RESUMEN

We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (i) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (i) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording modes, (ii) impact of recording technologies on EGM morphology, (iii) global or local mapping using various types of EGM involving signal processing techniques including isochronal-, voltage- fractionation-, dipole density-, and rotor mapping, enabling derivation of parameters like atrial rate, entropy, conduction velocity/direction, (iv) value of epicardial and optical mapping, (v) AF detection by cardiac implantable electronic devices containing various detection algorithms applicable to stored EGMs, (vi) contribution of machine learning (ML) to further improvement of signals processing technologies. Recording and processing of EGM (or ECG) are the cornerstones of (body surface) mapping of AF. Currently available AF recording and processing technologies are mainly restricted to specific applications or have technological limitations. Improvements in AF mapping by obtaining highest fidelity source signals (e.g. catheter-electrode combinations) for signal processing (e.g. filtering, digitization, and noise elimination) is of utmost importance. Novel acquisition instruments (multi-polar catheters combined with improved physical modelling and ML techniques) will enable enhanced and automated interpretation of EGM recordings in the near future.


Asunto(s)
Fibrilación Atrial , Cardiología , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/terapia , Mapeo del Potencial de Superficie Corporal , Atrios Cardíacos , Humanos , América Latina
12.
Hypertens Res ; 45(2): 292-307, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34916661

RESUMEN

Treatment of hypertension-mediated cardiac damage with left ventricular (LV) hypertrophy (LVH) and heart failure remains challenging. To identify novel targets, we performed comparative transcriptome analysis between genetic models derived from stroke-prone spontaneously hypertensive rats (SHRSP). Here, we identified carboxypeptidase X 2 (Cpxm2) as a genetic locus affecting LV mass. Analysis of isolated rat cardiomyocytes and cardiofibroblasts indicated Cpxm2 expression and intrinsic upregulation in genetic hypertension. Immunostaining indicated that CPXM2 associates with the t-tubule network of cardiomyocytes. The functional role of Cpxm2 was further investigated in Cpxm2-deficient (KO) and wild-type (WT) mice exposed to deoxycorticosterone acetate (DOCA). WT and KO animals developed severe and similar systolic hypertension in response to DOCA. WT mice developed severe LV damage, including increases in LV masses and diameters, impairment of LV systolic and diastolic function and reduced ejection fraction. These changes were significantly ameliorated or even normalized (i.e., ejection fraction) in KO-DOCA animals. LV transcriptome analysis showed a molecular cardiac hypertrophy/remodeling signature in WT but not KO mice with significant upregulation of 1234 transcripts, including Cpxm2, in response to DOCA. Analysis of endomyocardial biopsies from patients with cardiac hypertrophy indicated significant upregulation of CPXM2 expression. These data support further translational investigation of CPXM2.


Asunto(s)
Hipertensión , Animales , Carboxipeptidasas , Cardiomegalia/genética , Humanos , Hipertrofia Ventricular Izquierda , Ratones , Miocitos Cardíacos , Ratas
13.
Front Cardiovasc Med ; 8: 739907, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34778401

RESUMEN

Background: Obesity can influence the structure and function of the atrium, but most studies focused on the relationship of body mass index (BMI) and overt left atrium (LA) dysfunction as assessed by clinical imaging. We combined the assessment of right atrium (RA) function in vivo and in vitro in obese and non-obese patients scheduled for elective cardiac surgery. Methods: Atrial structure and function were quantified pre-operatively by echocardiography. RA tissue removed for the establishment of extracorporeal support was collected and RA trabeculae function was quantified in vitro at baseline and with adrenergic stimulation (isoproterenol). Fatty acid-binding protein 3 (FABP3) was quantified in RA tissue. Results were stratified according to the BMI of the patients. Results: About 76 patients were included pre-operatively for the echocardiographic analysis. RA trabeculae function at baseline was finally quantified from 46 patients and RA function in 28 patients was also assessed with isoproterenol. There was no significant correlation between BMI and the parameters of atrial function measured by the clinical echocardiography. However, in vitro measurements revealed a significant correlation between BMI and a prolonged relaxation of the atrial myocardium at baseline, which persisted after controlling for the atrial fibrillation and diabetes by the partial correlation analysis. Acceleration of relaxation with isoproterenol was significantly lower in the obese group (BMI ≥ 30 kg/m2). As a result, relaxation with adrenergic stimulation in the obese group remained significantly higher compared to the overweight group (25 kg/m2 ≤ BMI < 30 kg/m2, p = 0.027) and normal group (18.5 kg/m2 ≤ BMI < 25 kg/m2, p = 0.036). There were no differences on impacts of the isoproterenol on (systolic) developed force between groups. The expression of FABP3 in the obese group was significantly higher compared to the normal group (p = 0.049) and the correlation analysis showed the significant correlations between the level of FABP3 in the RA trabeculae function. Conclusion: A higher BMI is associated with the early subclinical changes of RA myocardial function with the slowed relaxation and reduced adrenergic lusitropy.

14.
Biochem Biophys Rep ; 28: 101162, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34761128

RESUMEN

BACKGROUND: Calpains are calcium activated cysteine proteases that play a pivotal role in the pathophysiology of cardiac remodeling. METHODS: Here, we performed left anterior descending coronary artery ligation in rats as a model for ischemic systolic heart failure and examined the time- and region-specific regulation of calpain-1 and calpain-2 in the left ventricular myocardium. RESULTS: Following anterior wall myocardial infarction, calpain activity was significantly increased restricted to the ischemic anterior area at days 1, 5 and 14. No changes in calpain activity at neither time point were detected in the borderzone and remote posterior area of the left ventricle. Of note, calpain activity in the infarcted anterior myocardium was regulated differentially in the acute vs. subacute and chronic phase. In the acute phase, calpain translocation to the plasma membrane and attenuation of the expression of its endogenous inhibitor, calpastatin, were identified as the driving forces. In the subacute and chronic phase, calpain activity was regulated at the level of protein expression that was shown to be essentially independent of transcriptional activity. CONCLUSIONS: We conclude that myocardial infarction leads to a distinct calpain regulation pattern in the left ventricular myocardium that is region specific and time dependent. Considering the results from our previous studies, a spatio-temporal interaction between calpains and calcium dependent natriuretic peptide production in the infarcted myocardium is possible. GENERAL SIGNIFICANCE: Our results shed more light in the differential regulation of calpain activity in the myocardium and might aid in the development of targeted post-infarct and/or heart failure therapeutics.

15.
Cardiovasc Res ; 117(14): 2705-2729, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34528075

RESUMEN

The cardiovascular system is significantly affected in coronavirus disease-19 (COVID-19). Microvascular injury, endothelial dysfunction, and thrombosis resulting from viral infection or indirectly related to the intense systemic inflammatory and immune responses are characteristic features of severe COVID-19. Pre-existing cardiovascular disease and viral load are linked to myocardial injury and worse outcomes. The vascular response to cytokine production and the interaction between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and angiotensin-converting enzyme 2 receptor may lead to a significant reduction in cardiac contractility and subsequent myocardial dysfunction. In addition, a considerable proportion of patients who have been infected with SARS-CoV-2 do not fully recover and continue to experience a large number of symptoms and post-acute complications in the absence of a detectable viral infection. This conditions often referred to as 'post-acute COVID-19' may have multiple causes. Viral reservoirs or lingering fragments of viral RNA or proteins contribute to the condition. Systemic inflammatory response to COVID-19 has the potential to increase myocardial fibrosis which in turn may impair cardiac remodelling. Here, we summarize the current knowledge of cardiovascular injury and post-acute sequelae of COVID-19. As the pandemic continues and new variants emerge, we can advance our knowledge of the underlying mechanisms only by integrating our understanding of the pathophysiology with the corresponding clinical findings. Identification of new biomarkers of cardiovascular complications, and development of effective treatments for COVID-19 infection are of crucial importance.


Asunto(s)
COVID-19/complicaciones , Enfermedades Cardiovasculares/virología , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/enzimología , COVID-19/etiología , COVID-19/fisiopatología , COVID-19/terapia , Factores de Riesgo Cardiometabólico , Enfermedades Cardiovasculares/enzimología , Enfermedades Cardiovasculares/fisiopatología , Ensayos Clínicos como Asunto , Humanos , Inflamación/complicaciones , Inflamación/virología , Microcirculación , Caracteres Sexuales , Síndrome Post Agudo de COVID-19
16.
PLoS One ; 16(8): e0255976, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34411149

RESUMEN

BACKGROUND: Cardiac injury associated with cytokine release frequently occurs in SARS-CoV-2 mediated coronavirus disease (COVID19) and mortality is particularly high in these patients. The mechanistic role of the COVID19 associated cytokine-storm for the concomitant cardiac dysfunction and associated arrhythmias is unclear. Moreover, the role of anti-inflammatory therapy to mitigate cardiac dysfunction remains elusive. AIMS AND METHODS: We investigated the effects of COVID19-associated inflammatory response on cardiac cellular function as well as its cardiac arrhythmogenic potential in rat and induced pluripotent stem cell derived cardiomyocytes (iPS-CM). In addition, we evaluated the therapeutic potential of the IL-1ß antagonist Canakinumab using state of the art in-vitro confocal and ratiometric high-throughput microscopy. RESULTS: Isolated rat ventricular cardiomyocytes were exposed to control or COVID19 serum from intensive care unit (ICU) patients with severe ARDS and impaired cardiac function (LVEF 41±5%; 1/3 of patients on veno-venous extracorporeal membrane oxygenation; CK 154±43 U/l). Rat cardiomyocytes showed an early increase of myofilament sensitivity, a decrease of Ca2+ transient amplitudes and altered baseline [Ca2+] upon exposure to patient serum. In addition, we used iPS-CM to explore the long-term effect of patient serum on cardiac electrical and mechanical function. In iPS-CM, spontaneous Ca2+ release events were more likely to occur upon incubation with COVID19 serum and nuclear as well as cytosolic Ca2+ release were altered. Co-incubation with Canakinumab had no effect on pro-arrhythmogenic Ca2+ release or Ca2+ signaling during excitation-contraction coupling, nor significantly influenced cellular automaticity. CONCLUSION: Serum derived from COVID19 patients exerts acute cardio-depressant and chronic pro-arrhythmogenic effects in rat and iPS-derived cardiomyocytes. Canakinumab had no beneficial effect on cellular Ca2+ signaling during excitation-contraction coupling. The presented method utilizing iPS-CM and in-vitro Ca2+ imaging might serve as a novel tool for precision medicine. It allows to investigate cytokine related cardiac dysfunction and pharmacological approaches useful therein.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Arritmias Cardíacas , Tratamiento Farmacológico de COVID-19 , COVID-19 , Señalización del Calcio/efectos de los fármacos , Miocitos Cardíacos , SARS-CoV-2/metabolismo , Adulto , Anciano , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , COVID-19/complicaciones , COVID-19/metabolismo , COVID-19/patología , Calcio/metabolismo , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Ratas Sprague-Dawley , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología
17.
Europace ; 23(11): 1795-1814, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34313298

RESUMEN

Cardiac arrhythmias are a major cause of death and disability. A large number of experimental cell and animal models have been developed to study arrhythmogenic diseases. These models have provided important insights into the underlying arrhythmia mechanisms and translational options for their therapeutic management. This position paper from the ESC Working Group on Cardiac Cellular Electrophysiology provides an overview of (i) currently available in vitro, ex vivo, and in vivo electrophysiological research methodologies, (ii) the most commonly used experimental (cellular and animal) models for cardiac arrhythmias including relevant species differences, (iii) the use of human cardiac tissue, induced pluripotent stem cell (hiPSC)-derived and in silico models to study cardiac arrhythmias, and (iv) the availability, relevance, limitations, and opportunities of these cellular and animal models to recapitulate specific acquired and inherited arrhythmogenic diseases, including atrial fibrillation, heart failure, cardiomyopathy, myocarditis, sinus node, and conduction disorders and channelopathies. By promoting a better understanding of these models and their limitations, this position paper aims to improve the quality of basic research in cardiac electrophysiology, with the ultimate goal to facilitate the clinical translation and application of basic electrophysiological research findings on arrhythmia mechanisms and therapies.


Asunto(s)
Fibrilación Atrial , Técnicas Electrofisiológicas Cardíacas , Animales , Electrofisiología Cardíaca , Fenómenos Electrofisiológicos , Humanos , Modelos Teóricos
18.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073033

RESUMEN

Atrial fibrillation (AF) is the most common sustained (atrial) arrhythmia, a considerable global health burden and often associated with heart failure. Perturbations of redox signalling in cardiomyocytes provide a cellular substrate for the manifestation and maintenance of atrial arrhythmias. Several clinical trials have shown that treatment with sodium-glucose linked transporter inhibitors (SGLTi) improves mortality and hospitalisation in heart failure patients independent of the presence of diabetes. Post hoc analysis of the DECLARE-TIMI 58 trial showed a 19% reduction in AF in patients with diabetes mellitus (hazard ratio, 0.81 (95% confidence interval: 0.68-0.95), n = 17.160) upon treatment with SGLTi, regardless of pre-existing AF or heart failure and independent from blood pressure or renal function. Accordingly, ongoing experimental work suggests that SGLTi not only positively impact heart failure but also counteract cellular ROS production in cardiomyocytes, thereby potentially altering atrial remodelling and reducing AF burden. In this article, we review recent studies investigating the effect of SGLTi on cellular processes closely interlinked with redox balance and their potential effects on the onset and progression of AF. Despite promising insight into SGLTi effect on Ca2+ cycling, Na+ balance, inflammatory and fibrotic signalling, mitochondrial function and energy balance and their potential effect on AF, the data are not yet conclusive and the importance of individual pathways for human AF remains to be established. Lastly, an overview of clinical studies investigating SGLTi in the context of AF is provided.


Asunto(s)
Fibrilación Atrial/tratamiento farmacológico , Miocitos Cardíacos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Animales , Calcio/metabolismo , Células Cultivadas , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Especies Reactivas de Oxígeno/metabolismo
19.
ESC Heart Fail ; 8(4): 3130-3144, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34002482

RESUMEN

AIMS: Heart failure with preserved ejection fraction (HFpEF) is frequently (30%) associated with right ventricular (RV) dysfunction, which increases morbidity and mortality in these patients. Yet cellular mechanisms of RV remodelling and RV dysfunction in HFpEF are not well understood. Here, we evaluated RV cardiomyocyte function in a rat model of metabolically induced HFpEF. METHODS AND RESULTS: Heart failure with preserved ejection fraction-prone animals (ZSF-1 obese) and control rats (Wistar Kyoto) were fed a high-caloric diet for 13 weeks. Haemodynamic characterization by echocardiography and invasive catheterization was performed at 22 and 23 weeks of age, respectively. After sacrifice, organ morphometry, RV histology, isolated RV cardiomyocyte function, and calcium (Ca2+ ) transients were assessed. ZSF-1 obese rats showed a HFpEF phenotype with left ventricular (LV) hypertrophy, LV diastolic dysfunction (including increased LV end-diastolic pressures and E/e' ratio), and preserved LV ejection fraction. ZSF-1 obese animals developed RV dilatation (50% increased end-diastolic area) and mildly impaired RV ejection fraction (42%) with evidence of RV hypertrophy. In isolated RV cardiomyocytes from ZSF-1 obese rats, cell shortening amplitude was preserved, but cytosolic Ca2+ transient amplitude was reduced. In addition, augmentation of cytosolic Ca2+ release with increased stimulation frequency was lost in ZSF-1 obese rats. Myofilament sensitivity was increased, while contractile kinetics were largely unaffected in intact isolated RV cardiomyocytes from ZSF-1 obese rats. Western blot analysis revealed significantly increased phosphorylation of cardiac myosin-binding protein C (Ser282 cMyBP-C) but no change in phosphorylation of troponin I (Ser23, 24 TnI) in RV myocardium from ZSF-1 obese rats. CONCLUSIONS: Right ventricular dysfunction in obese ZSF-1 rats with HFpEF is associated with intrinsic RV cardiomyocyte remodelling including reduced cytosolic Ca2+ amplitudes, loss of frequency-dependent augmentation of Ca2+ release, and increased myofilament Ca2+ sensitivity.


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Derecha , Animales , Insuficiencia Cardíaca/etiología , Homeostasis , Humanos , Miocitos Cardíacos , Miofibrillas , Ratas , Volumen Sistólico , Disfunción Ventricular Derecha/etiología
20.
ESC Heart Fail ; 8(4): 2591-2596, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33932118

RESUMEN

AIM: Wearable cardioverter defibrillator (WCD, LifeVest, and Zoll) therapy has become a useful tool to bridge a temporarily increased risk for sudden cardiac death. However, despite extensive use, there is a lack of evidence whether patients with myocarditis and impaired LVEF may benefit from treatment with a WCD. METHODS AND RESULTS: We conducted a single-centre retrospective observational study analysing patients with a WCD prescribed between September 2015 and April 2020 at our institution. In total, 135 patients were provided with a WCD, amongst these 76 patients (mean age 48.9 ± 13.7 years; 84.2% male) for clinically suspected myocarditis. Based on the results of the endomyocardial biopsy and, where available cardiac magnetic resonance imaging, 39 patients (51.3%) were diagnosed with myocarditis and impaired LVEF and 37 patients (48.7%) with dilated cardiomyopathy (DCM) without evidence of cardiac inflammation. The main immunohistopathological myocarditis subtype was lymphocytic myocarditis in 36 (92.3%) patients, and four patients (10.3%) of this group had an acute myocarditis. Three patients had cardiac sarcoidosis (7.7%). Ventricular tachycardia occurred in seven myocarditis (in total 41 VTs; 85.4% non-sustained) and one DCM patients (in total one non-sustained ventricular tachycardia). Calculated necessary WCD wearing time until ventricular tachycardia occurrence is 86.41 days in myocarditis compared with 6.46 years in DCM patients. CONCLUSIONS: Our data suggest that myocarditis patients may benefit from WCD therapy. However, as our study is not powered for outcome, further randomized studies powered for the outcome morbidity and mortality are necessary.


Asunto(s)
Desfibriladores Implantables , Miocarditis , Dispositivos Electrónicos Vestibles , Adulto , Muerte Súbita Cardíaca/epidemiología , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/prevención & control , Cardioversión Eléctrica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miocarditis/complicaciones , Miocarditis/diagnóstico , Miocarditis/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...