Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Epilepsia ; 65(5): 1451-1461, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491957

RESUMEN

OBJECTIVE: The contribution of somatic variants to epilepsy has recently been demonstrated, particularly in the etiology of malformations of cortical development. The aim of this study was to determine the diagnostic yield of somatic variants in genes that have been previously associated with a somatic or germline epilepsy model, ascertained from resected brain tissue from patients with multidrug-resistant focal epilepsy. METHODS: Forty-two patients were recruited across three categories: (1) malformations of cortical development, (2) mesial temporal lobe epilepsy with hippocampal sclerosis, and (3) nonlesional focal epilepsy. Participants were subdivided based on histopathology of the resected brain. Paired blood- and brain-derived DNA samples were sequenced using high-coverage targeted next generation sequencing to high depth (585× and 1360×, respectively). Variants were identified using Genome Analysis ToolKit (GATK4) MuTect-2 and confirmed using high-coverage Amplicon-EZ sequencing. RESULTS: Sequence data on 41 patients passed quality control. Four somatic variants were validated following amplicon sequencing: within CBL, ALG13, MTOR, and FLNA. The diagnostic yield across 41 patients was 10%, 9% in mesial temporal lobe epilepsy with hippocampal sclerosis and 20% in malformations of cortical development. SIGNIFICANCE: This study provides novel insights into the etiology of mesial temporal lobe epilepsy with hippocampal sclerosis, highlighting a potential pathogenic role of somatic variants in CBL and ALG13. We also report candidate diagnostic somatic variants in FLNA in focal cortical dysplasia, while providing further insight into the importance of MTOR and related genes in focal cortical dysplasia. This work demonstrates the potential molecular diagnostic value of variants in both germline and somatic epilepsy genes.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Hipocampo , Esclerosis , Humanos , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/patología , Hipocampo/patología , Esclerosis/genética , Esclerosis/patología , Epilepsia Refractaria/genética , Epilepsia Refractaria/etiología , Epilepsia Refractaria/patología , Femenino , Masculino , Adulto , Adulto Joven , Adolescente , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/patología , Niño , Filaminas/genética , Persona de Mediana Edad , Preescolar , Variación Genética/genética , Esclerosis del Hipocampo
2.
BMC Genomics ; 25(1): 115, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279154

RESUMEN

BACKGROUND: Short tandem repeats (STRs) are widely distributed across the human genome and are associated with numerous neurological disorders. However, the extent that STRs contribute to disease is likely under-estimated because of the challenges calling these variants in short read next generation sequencing data. Several computational tools have been developed for STR variant calling, but none fully address all of the complexities associated with this variant class. RESULTS: Here we introduce LUSTR which is designed to address some of the challenges associated with STR variant calling by enabling more flexibility in defining STR loci, allowing for customizable modules to tailor analyses, and expanding the capability to call somatic and multiallelic STR variants. LUSTR is a user-friendly and easily customizable tool for targeted or unbiased genome-wide STR variant screening that can use either predefined or novel genome builds. Using both simulated and real data sets, we demonstrated that LUSTR accurately infers germline and somatic STR expansions in individuals with and without diseases. CONCLUSIONS: LUSTR offers a powerful and user-friendly approach that allows for the identification of STR variants and can facilitate more comprehensive studies evaluating the role of pathogenic STR variants across human diseases.


Asunto(s)
Genoma Humano , Repeticiones de Microsatélite , Humanos , Repeticiones de Microsatélite/genética , Células Germinativas , Secuenciación de Nucleótidos de Alto Rendimiento
3.
medRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260255

RESUMEN

SPOUT1/CENP-32 encodes a putative SPOUT RNA methyltransferase previously identified as a mitotic chromosome associated protein. SPOUT1/CENP-32 depletion leads to centrosome detachment from the spindle poles and chromosome misalignment. Aided by gene matching platforms, we identified 24 individuals with neurodevelopmental delays from 18 families with bi-allelic variants in SPOUT1/CENP-32 detected by exome/genome sequencing. Zebrafish spout1/cenp-32 mutants showed reduction in larval head size with concomitant apoptosis likely associated with altered cell cycle progression. In vivo complementation assays in zebrafish indicated that SPOUT1/CENP-32 missense variants identified in humans are pathogenic. Crystal structure analysis of SPOUT1/CENP-32 revealed that most disease-associated missense variants mapped to the catalytic domain. Additionally, SPOUT1/CENP-32 recurrent missense variants had reduced methyltransferase activity in vitro and compromised centrosome tethering to the spindle poles in human cells. Thus, SPOUT1/CENP-32 pathogenic variants cause an autosomal recessive neurodevelopmental disorder: SpADMiSS ( SPOUT1 Associated Development delay Microcephaly Seizures Short stature) underpinned by mitotic spindle organization defects and consequent chromosome segregation errors.

4.
Eur J Hum Genet ; 32(2): 224-231, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38097767

RESUMEN

Alternating hemiplegia of childhood (AHC) is a rare neurodevelopment disorder that is typically characterized by debilitating episodic attacks of hemiplegia, seizures, and intellectual disability. Over 85% of individuals with AHC have a de novo missense variant in ATP1A3 encoding the catalytic α3 subunit of neuronal Na+/K+ ATPases. The remainder of the patients are genetically unexplained. Here, we used next-generation sequencing to search for the genetic cause of 26 ATP1A3-negative index patients with a clinical presentation of AHC or an AHC-like phenotype. Three patients had affected siblings. Using targeted sequencing of exonic, intronic, and flanking regions of ATP1A3 in 22 of the 26 index patients, we found no ultra-rare variants. Using exome sequencing, we identified the likely genetic diagnosis in 9 probands (35%) in five genes, including RHOBTB2 (n = 3), ATP1A2 (n = 3), ANK3 (n = 1), SCN2A (n = 1), and CHD2 (n = 1). In follow-up investigations, two additional ATP1A3-negative individuals were found to have rare missense SCN2A variants, including one de novo likely pathogenic variant and one likely pathogenic variant for which inheritance could not be determined. Functional evaluation of the variants identified in SCN2A and ATP1A2 supports the pathogenicity of the identified variants. Our data show that genetic variants in various neurodevelopmental genes, including SCN2A, lead to AHC or AHC-like presentation. Still, the majority of ATP1A3-negative AHC or AHC-like patients remain unexplained, suggesting that other mutational mechanisms may account for the phenotype or that cases may be explained by oligo- or polygenic risk factors.


Asunto(s)
Hemiplejía , Mutación Missense , Humanos , Hemiplejía/diagnóstico , Hemiplejía/genética , Secuenciación del Exoma , Mutación , ATPasa Intercambiadora de Sodio-Potasio/genética , Proteínas de Unión al GTP/genética , Proteínas Supresoras de Tumor/genética , Canal de Sodio Activado por Voltaje NAV1.2/genética
5.
bioRxiv ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38077069

RESUMEN

Brain somatic variants in SLC35A2 are associated with clinically drug-resistant epilepsy and developmental brain malformations, including mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE). SLC35A2 encodes a uridine diphosphate galactose translocator that is essential for protein glycosylation; however, the neurodevelopmental mechanisms by which SLC35A2 disruption leads to clinical and histopathological features remain unspecified. We hypothesized that focal knockout (KO) or knockdown (KD) of Slc35a2 in the developing mouse cortex would disrupt cerebral cortical development through altered neuronal migration and cause changes in network excitability. We used in utero electroporation (IUE) to introduce CRISPR/Cas9 and targeted guide RNAs or short-hairpin RNAs to achieve Slc35a2 KO or KD, respectively, during early corticogenesis. Following Slc35a2 KO or KD, we observed disrupted radial migration of transfected neurons evidenced by heterotopic cells located in lower cortical layers and in the sub-cortical white matter. Slc35a2 KO in neurons did not induce changes in oligodendrocyte number, suggesting that the oligodendroglial hyperplasia observed in MOGHE originates from distinct cell autonomous effects. Spontaneous seizures were not observed, but intracranial EEG recordings after focal KO showed a reduced seizure threshold following pentylenetetrazol injection. These results demonstrate that Slc35a2 KO or KD in vivo disrupts corticogenesis through altered neuronal migration.

6.
Nat Genet ; 55(11): 1920-1928, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37872450

RESUMEN

Somatic mosaicism is a known cause of neurological disorders, including developmental brain malformations and epilepsy. Brain mosaicism is traditionally attributed to post-zygotic genetic alterations arising in fetal development. Here we describe post-zygotic rescue of meiotic errors as an alternate origin of brain mosaicism in patients with focal epilepsy who have mosaic chromosome 1q copy number gains. Genomic analysis showed evidence of an extra parentally derived chromosome 1q allele in the resected brain tissue from five of six patients. This copy number gain is observed only in patient brain tissue, but not in blood or buccal cells, and is strongly enriched in astrocytes. Astrocytes carrying chromosome 1q gains exhibit distinct gene expression signatures and hyaline inclusions, supporting a novel genetic association for astrocytic inclusions in epilepsy. Further, these data demonstrate an alternate mechanism of brain chromosomal mosaicism, with parentally derived copy number gain isolated to brain, reflecting rescue in other tissues during development.


Asunto(s)
Epilepsias Parciales , Mosaicismo , Humanos , Mucosa Bucal , Mutación , Encéfalo , Epilepsias Parciales/genética
7.
Neurobiol Dis ; 185: 106261, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37579995

RESUMEN

Hypothalamic hamartoma (HH) is a rare benign developmental brain lesion commonly associated with a well characterized epilepsy phenotype. Most individuals with HH are non-syndromic without additional developmental anomalies nor a family history of disease. Nonetheless, HH is a feature of Pallister-Hall (PHS) and Oro-Facial-Digital Type VI (OFD VI) syndromes, both characterized by additional developmental anomalies. Initial genetic of analysis HH began with syndromic HH, where germline inherited or de novo variants in GLI3, encoding a central transcription factor in the sonic hedgehog (Shh) signalling pathway, were identified in most individuals with PHS. Following these discoveries in syndromic HH, the hypothesis that post-zygotic mosaicism in related genes may underly non-syndromic HH was tested. We discuss the identified mosaic variants within individuals with non-syndromic HH, review the analytical methodologies and diagnostic yields, and explore understanding of the functional role of the implicated genes with respect to Shh signalling, and cilia development and function. We also outline future challenges in studying non-syndromic HH and suggest potential novel strategies to interrogate brain mosaicism in HH.


Asunto(s)
Proteínas Hedgehog , Mosaicismo , Proteínas Hedgehog/genética , Cilios/metabolismo , Encéfalo/metabolismo
8.
Epilepsia ; 64(11): 2909-2913, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37562820

RESUMEN

The recent explosion of epilepsy genetic testing has created challenges for interpretation of gene variants. Assessments of the functional consequences of genetic variants either by predictive or experimental strategies can contribute to estimating pathogenicity, but there is no consensus on which approach is best. The Special Interest Group on Epilepsy Genetics hosted a session during the Annual American Epilepsy Society Meeting in December 2022 to discuss this topic. The session featured a debate of the relative advantages and limitations of predicting (prophecy) versus experimentally determining (empiricism) variant function using ion channel gene variants as examples. This commentary summarizes these discussions.


Asunto(s)
Epilepsia , Variación Genética , Humanos , Variación Genética/genética , Empirismo , Pruebas Genéticas , Epilepsia/diagnóstico , Epilepsia/genética
9.
JAMA Neurol ; 80(6): 578-587, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126322

RESUMEN

Importance: Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy subtype and is often refractory to antiseizure medications. While most patients with MTLE do not have pathogenic germline genetic variants, the contribution of postzygotic (ie, somatic) variants in the brain is unknown. Objective: To test the association between pathogenic somatic variants in the hippocampus and MTLE. Design, Setting, and Participants: This case-control genetic association study analyzed the DNA derived from hippocampal tissue of neurosurgically treated patients with MTLE and age-matched and sex-matched neurotypical controls. Participants treated at level 4 epilepsy centers were enrolled from 1988 through 2019, and clinical data were collected retrospectively. Whole-exome and gene-panel sequencing (each genomic region sequenced more than 500 times on average) were used to identify candidate pathogenic somatic variants. A subset of novel variants was functionally evaluated using cellular and molecular assays. Patients with nonlesional and lesional (mesial temporal sclerosis, focal cortical dysplasia, and low-grade epilepsy-associated tumors) drug-resistant MTLE who underwent anterior medial temporal lobectomy were eligible. All patients with available frozen tissue and appropriate consents were included. Control brain tissue was obtained from neurotypical donors at brain banks. Data were analyzed from June 2020 to August 2022. Exposures: Drug-resistant MTLE. Main Outcomes and Measures: Presence and abundance of pathogenic somatic variants in the hippocampus vs the unaffected temporal neocortex. Results: Of 105 included patients with MTLE, 53 (50.5%) were female, and the median (IQR) age was 32 (26-44) years; of 30 neurotypical controls, 11 (36.7%) were female, and the median (IQR) age was 37 (18-53) years. Eleven pathogenic somatic variants enriched in the hippocampus relative to the unaffected temporal neocortex (median [IQR] variant allele frequency, 1.92 [1.5-2.7] vs 0.3 [0-0.9]; P = .01) were detected in patients with MTLE but not in controls. Ten of these variants were in PTPN11, SOS1, KRAS, BRAF, and NF1, all predicted to constitutively activate Ras/Raf/mitogen-activated protein kinase (MAPK) signaling. Immunohistochemical studies of variant-positive hippocampal tissue demonstrated increased Erk1/2 phosphorylation, indicative of Ras/Raf/MAPK activation, predominantly in glial cells. Molecular assays showed abnormal liquid-liquid phase separation for the PTPN11 variants as a possible dominant gain-of-function mechanism. Conclusions and Relevance: Hippocampal somatic variants, particularly those activating Ras/Raf/MAPK signaling, may contribute to the pathogenesis of sporadic, drug-resistant MTLE. These findings may provide a novel genetic mechanism and highlight new therapeutic targets for this common indication for epilepsy surgery.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Epilepsia , Neocórtex , Humanos , Femenino , Adulto , Persona de Mediana Edad , Masculino , Epilepsia del Lóbulo Temporal/cirugía , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estudios Retrospectivos , Hipocampo/patología , Epilepsia/patología
10.
Ann Neurol ; 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36534060

RESUMEN

OBJECTIVE: Genetic factors have long been debated as a cause of failure of surgery for mesial temporal lobe epilepsy (MTLE). We investigated whether rare genetic variation influences seizure outcomes of MTLE surgery. METHODS: We performed an international, multicenter, whole exome sequencing study of patients who underwent surgery for drug-resistant, unilateral MTLE with normal magnetic resonance imaging (MRI) or MRI evidence of hippocampal sclerosis and ≥2-year postsurgical follow-up. Patients with either sustained seizure freedom (favorable outcome) or ongoing uncontrolled seizures since surgery (unfavorable outcome) were included. Exomes of controls without epilepsy were also included. Gene set burden analyses were carried out to identify genes with significant enrichment of rare deleterious variants in patients compared to controls. RESULTS: Nine centers from 3 continents contributed 206 patients operated for drug-resistant unilateral MTLE, of whom 196 (149 with favorable outcome and 47 with unfavorable outcome) were included after stringent quality control. Compared to 8,718 controls, MTLE cases carried a higher burden of ultrarare missense variants in constrained genes that are intolerant to loss-of-function (LoF) variants (odds ratio [OR] = 2.6, 95% confidence interval [CI] = 1.9-3.5, p = 1.3E-09) and in genes encoding voltage-gated cation channels (OR = 2.4, 95% CI = 1.4-3.8, p = 2.7E-04). Proportions of subjects with such variants were comparable between patients with favorable outcome and those with unfavorable outcome, with no significant between-group differences. INTERPRETATION: Rare variation contributes to the genetic architecture of MTLE, but does not appear to have a major role in failure of MTLE surgery. These findings can be incorporated into presurgical decision-making and counseling. ANN NEUROL 2022.

11.
EBioMedicine ; 81: 104079, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35636315

RESUMEN

BACKGROUND: The epilepsies are highly heritable conditions that commonly follow complex inheritance. While monogenic causes have been identified in rare familial epilepsies, most familial epilepsies remain unsolved. We aimed to determine (1) whether common genetic variation contributes to familial epilepsy risk, and (2) whether that genetic risk is enriched in familial compared with non-familial (sporadic) epilepsies. METHODS: Using common variants derived from the largest epilepsy genome-wide association study, we calculated polygenic risk scores (PRS) for patients with familial epilepsy (n = 1,818 from 1,181 families), their unaffected relatives (n = 771), sporadic patients (n = 1,182), and population controls (n = 15,929). We also calculated separate PRS for genetic generalised epilepsy (GGE) and focal epilepsy. Statistical analyses used mixed-effects regression models to account for familial relatedness, sex, and ancestry. FINDINGS: Patients with familial epilepsies had higher epilepsy PRS compared to population controls (OR 1·20, padj = 5×10-9), sporadic patients (OR 1·11, padj = 0.008), and their own unaffected relatives (OR 1·12, padj = 0.01). The top 1% of the PRS distribution was enriched 3.8-fold for individuals with familial epilepsy when compared to the lowest decile (padj = 5×10-11). Familial PRS enrichment was consistent across epilepsy type; overall, polygenic risk was greatest for the GGE clinical group. There was no significant PRS difference in familial cases with established rare variant genetic etiologies compared to unsolved familial cases. INTERPRETATION: The aggregate effects of common genetic variants, measured as polygenic risk scores, play an important role in explaining why some families develop epilepsy, why specific family members are affected while their relatives are not, and why families manifest specific epilepsy types. Polygenic risk contributes to the complex inheritance of the epilepsies, including in individuals with a known genetic etiology. FUNDING: National Health and Medical Research Council of Australia, National Institutes of Health, American Academy of Neurology, Thomas B and Jeannette E Laws McCabe Fund, Mirowski Family Foundation.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Síndromes Epilépticos , Epilepsia/genética , Epilepsia Generalizada/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genética
12.
Brain ; 145(8): 2704-2720, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35441233

RESUMEN

Post-zygotically acquired genetic variants, or somatic variants, that arise during cortical development have emerged as important causes of focal epilepsies, particularly those due to malformations of cortical development. Pathogenic somatic variants have been identified in many genes within the PI3K-AKT-mTOR-signalling pathway in individuals with hemimegalencephaly and focal cortical dysplasia (type II), and more recently in SLC35A2 in individuals with focal cortical dysplasia (type I) or non-dysplastic epileptic cortex. Given the expanding role of somatic variants across different brain malformations, we sought to delineate the landscape of somatic variants in a large cohort of patients who underwent epilepsy surgery with hemimegalencephaly or focal cortical dysplasia. We evaluated samples from 123 children with hemimegalencephaly (n = 16), focal cortical dysplasia type I and related phenotypes (n = 48), focal cortical dysplasia type II (n = 44), or focal cortical dysplasia type III (n = 15). We performed high-depth exome sequencing in brain tissue-derived DNA from each case and identified somatic single nucleotide, indel and large copy number variants. In 75% of individuals with hemimegalencephaly and 29% with focal cortical dysplasia type II, we identified pathogenic variants in PI3K-AKT-mTOR pathway genes. Four of 48 cases with focal cortical dysplasia type I (8%) had a likely pathogenic variant in SLC35A2. While no other gene had multiple disease-causing somatic variants across the focal cortical dysplasia type I cohort, four individuals in this group had a single pathogenic or likely pathogenic somatic variant in CASK, KRAS, NF1 and NIPBL, genes previously associated with neurodevelopmental disorders. No rare pathogenic or likely pathogenic somatic variants in any neurological disease genes like those identified in the focal cortical dysplasia type I cohort were found in 63 neurologically normal controls (P = 0.017), suggesting a role for these novel variants. We also identified a somatic loss-of-function variant in the known epilepsy gene, PCDH19, present in a small number of alleles in the dysplastic tissue from a female patient with focal cortical dysplasia IIIa with hippocampal sclerosis. In contrast to focal cortical dysplasia type II, neither focal cortical dysplasia type I nor III had somatic variants in genes that converge on a unifying biological pathway, suggesting greater genetic heterogeneity compared to type II. Importantly, we demonstrate that focal cortical dysplasia types I, II and III are associated with somatic gene variants across a broad range of genes, many associated with epilepsy in clinical syndromes caused by germline variants, as well as including some not previously associated with radiographically evident cortical brain malformations.


Asunto(s)
Epilepsia , Hemimegalencefalia , Malformaciones del Desarrollo Cortical , Cadherinas , Proteínas de Ciclo Celular , Femenino , Humanos , Malformaciones del Desarrollo Cortical de Grupo I , Mutación , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Protocadherinas , Serina-Treonina Quinasas TOR
13.
Epilepsia ; 63(6): 1563-1570, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35298028

RESUMEN

OBJECTIVE: Levetiracetam (LEV) is an effective antiseizure medicine, but 10%-20% of people treated with LEV report psychiatric side-effects, and up to 1% may have psychotic episodes. Pharmacogenomic predictors of these adverse drug reactions (ADRs) have yet to be identified. We sought to determine the contribution of both common and rare genetic variation to psychiatric and behavioral ADRs associated with LEV. METHODS: This case-control study compared cases of LEV-associated behavioral disorder (n = 149) or psychotic reaction (n = 37) to LEV-exposed people with no history of psychiatric ADRs (n = 920). All samples were of European ancestry. We performed genome-wide association study (GWAS) analysis comparing those with LEV ADRs to controls. We estimated the polygenic risk scores (PRS) for schizophrenia and compared cases with LEV-associated psychotic reaction to controls. Rare variant burden analysis was performed using exome sequence data of cases with psychotic reactions (n = 18) and controls (n = 122). RESULTS: Univariate GWAS found no significant associations with either LEV-associated behavioural disorder or LEV-psychotic reaction. PRS analysis showed that cases of LEV-associated psychotic reaction had an increased PRS for schizophrenia relative to contr ols (p = .0097, estimate = .4886). The rare-variant analysis found no evidence of an increased burden of rare genetic variants in people who had experienced LEV-associated psychotic reaction relative to controls. SIGNIFICANCE: The polygenic burden for schizophrenia is a risk factor for LEV-associated psychotic reaction. To assess the clinical utility of PRS as a predictor, it should be tested in an independent and ideally prospective cohort. Larger sample sizes are required for the identification of significant univariate common genetic signals or rare genetic signals associated with psychiatric LEV ADRs.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Estudio de Asociación del Genoma Completo , Anticonvulsivantes/efectos adversos , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad/genética , Humanos , Levetiracetam/efectos adversos , Farmacogenética , Estudios Prospectivos
14.
Hum Mol Genet ; 31(14): 2307-2316, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35137044

RESUMEN

Hypothalamic hamartoma with gelastic seizures is a well-established cause of drug-resistant epilepsy in early life. The development of novel surgical techniques has permitted the genomic interrogation of hypothalamic hamartoma tissue. This has revealed causative mosaic variants within GLI3, OFD1 and other key regulators of the sonic-hedgehog pathway in a minority of cases. Sonic-hedgehog signalling proteins localize to the cellular organelle primary cilia. We therefore explored the hypothesis that cilia gene variants may underlie hitherto unsolved cases of sporadic hypothalamic hamartoma. We performed high-depth exome sequencing and chromosomal microarray on surgically resected hypothalamic hamartoma tissue and paired leukocyte-derived DNA from 27 patients. We searched for both germline and somatic variants under both dominant and bi-allelic genetic models. In hamartoma-derived DNA of seven patients we identified bi-allelic (one germline, one somatic) variants within one of four cilia genes-DYNC2I1, DYNC2H1, IFT140 or SMO. In eight patients, we identified single somatic variants in the previously established hypothalamic hamartoma disease genes GLI3 or OFD1. Overall, we established a plausible molecular cause for 15/27 (56%) patients. Here, we expand the genetic architecture beyond single variants within dominant disease genes that cause sporadic hypothalamic hamartoma to bi-allelic (one germline/one somatic) variants, implicate three novel cilia genes and reconceptualize the disorder as a ciliopathy.


Asunto(s)
Ciliopatías , Hamartoma , Enfermedades Hipotalámicas , Ciliopatías/genética , Hamartoma/genética , Proteínas Hedgehog/metabolismo , Humanos , Enfermedades Hipotalámicas/complicaciones , Enfermedades Hipotalámicas/genética , Imagen por Resonancia Magnética
15.
Mol Psychiatry ; 27(3): 1435-1447, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34799694

RESUMEN

Schizophrenia has a multifactorial etiology, involving a polygenic architecture. The potential benefit of whole genome sequencing (WGS) in schizophrenia and other psychotic disorders is not well studied. We investigated the yield of clinical WGS analysis in 251 families with a proband diagnosed with schizophrenia (N = 190), schizoaffective disorder (N = 49), or other conditions involving psychosis (N = 48). Participants were recruited in Israel and USA, mainly of Jewish, Arab, and other European ancestries. Trio (parents and proband) WGS was performed for 228 families (90.8%); in the other families, WGS included parents and at least two affected siblings. In the secondary analyses, we evaluated the contribution of rare variant enrichment in particular gene sets, and calculated polygenic risk score (PRS) for schizophrenia. For the primary outcome, diagnostic rate was 6.4%; we found clinically significant, single nucleotide variants (SNVs) or small insertions or deletions (indels) in 14 probands (5.6%), and copy number variants (CNVs) in 2 (0.8%). Significant enrichment of rare loss-of-function variants was observed in a gene set of top schizophrenia candidate genes in affected individuals, compared with population controls (N = 6,840). The PRS for schizophrenia was significantly increased in the affected individuals group, compared to their unaffected relatives. Last, we were also able to provide pharmacogenomics information based on CYP2D6 genotype data for most participants, and determine their antipsychotic metabolizer status. In conclusion, our findings suggest that WGS may have a role in the setting of both research and genetic counseling for individuals with schizophrenia and other psychotic disorders and their families.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Predisposición Genética a la Enfermedad/genética , Humanos , Herencia Multifactorial/genética , Trastornos Psicóticos/genética , Trastornos Psicóticos/psicología , Esquizofrenia/diagnóstico , Esquizofrenia/genética , Secuenciación Completa del Genoma
16.
Brain Commun ; 3(3): fcab128, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34396101

RESUMEN

Alternating hemiplegia of childhood is a rare neurodevelopmental disorder caused by ATP1A3 mutations. Some evidence for disease progression exists, but there are few systematic analyses. Here, we evaluate alternating hemiplegia of childhood progression in humans and in the D801N knock-in alternating hemiplegia of childhood mouse, Mashlool, model. This study performed an ambidirectional (prospective and retrospective data) analysis of an alternating hemiplegia of childhood patient cohort (n = 42, age 10.24 ± 1.48 years) seen at one US centre. To investigate potential disease progression, we used linear mixed effects models incorporating early and subsequent visits, and Wilcoxon Signed Rank test comparing first and last visits. Potential early-life clinical predictors were determined via multivariable regression. We also compared EEG background at first encounter and at last follow-up. We then performed a retrospective confirmation study on a multicentre cohort of alternating hemiplegia of childhood patients from France (n = 52). To investigate disease progression in the Mashlool mouse, we performed behavioural testing on a cohort of Mashlool- mice at prepubescent and adult ages (n = 11). Results: US patients, over time, demonstrated mild worsening of non-paroxysmal disability index scores, but not of paroxysmal disability index scores. Increasing age was a predictor of worse scores: P < 0.0001 for the non-paroxysmal disability index, intellectual disability scale and gross motor scores. Earliest non-paroxysmal disability index score was a predictor of last visit non-paroxysmal disability index score (P = 0.022), and earliest intellectual disability score was a predictor of last intellectual disability score (P = 0.035). More patients with EEG background slowing were noted at last follow-up as compared to initial (P = 0.015). Similar worsening of disease with age was also noted in the French cohort: age was a significant predictor of non-paroxysmal disability index score (P = 0.001) and first and last non-paroxysmal disability index score scores significantly differed (P = 0.002). In animal studies, adult Mashlool mice had, as compared to younger Mashlool mice, (i) worse balance beam performance; (ii) wider base of support; (iii) higher severity of seizures and resultant mortality; and (iv) no increased predisposition to hemiplegic or dystonic spells. In conclusion, (i) non-paroxysmal alternating hemiplegia of childhood manifestations show, on average over time, progression associated with severity of early-life non-paroxysmal disability and age. (ii) Progression also occurs in Mashlool mice, confirming that ATP1A3 disease can lead to age-related worsening. (iii) Clinical findings provide a basis for counselling patients and for designing therapeutic trials. Animal findings confirm a mouse model for investigation of underlying mechanisms of disease progression, and are also consistent with known mechanisms of ATP1A3-related neurodegeneration.

17.
Epilepsia ; 62(7): e103-e109, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34041744

RESUMEN

CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes. CSNK2B variants were identified by research or clinical exome sequencing, and investigators from different centers were connected via GeneMatcher. Most individuals had developmental delay and generalized epilepsy with onset in the first 2 years. However, we found a broad spectrum of phenotypic severity, ranging from early normal development with pharmacoresponsive seizures to profound intellectual disability with intractable epilepsy and recurrent refractory status epilepticus. These findings suggest that CSNK2B should be considered in the diagnostic evaluation of patients with a broad range of NDD with treatable or intractable seizures.


Asunto(s)
Discapacidades del Desarrollo/genética , Epilepsia Generalizada/genética , Adolescente , Adulto , Edad de Inicio , Niño , Preescolar , Discapacidades del Desarrollo/fisiopatología , Epilepsias Mioclónicas/diagnóstico , Epilepsias Mioclónicas/etiología , Epilepsias Mioclónicas/genética , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/etiología , Exoma/genética , Femenino , Variación Genética , Humanos , Lactante , Discapacidad Intelectual/etiología , Discapacidad Intelectual/genética , Masculino , Mutación/genética , Fenotipo , Estado Epiléptico/diagnóstico , Estado Epiléptico/etiología , Estado Epiléptico/genética , Adulto Joven
18.
Neurology ; 96(18): e2251-e2260, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34038384

RESUMEN

OBJECTIVE: To identify the causative gene in a large unsolved family with genetic epilepsy with febrile seizures plus (GEFS+), we sequenced the genomes of family members, and then determined the contribution of the identified gene to the pathogenicity of epilepsies by examining sequencing data from 2,772 additional patients. METHODS: We performed whole genome sequencing of 3 members of a GEFS+ family. Subsequently, whole exome sequencing data from 1,165 patients with epilepsy from the Epi4K dataset and 1,329 Australian patients with epilepsy from the Epi25 dataset were interrogated. Targeted resequencing was performed on 278 patients with febrile seizures or GEFS+ phenotypes. Variants were validated and familial segregation examined by Sanger sequencing. RESULTS: Eight previously unreported missense variants were identified in SLC32A1, coding for the vesicular inhibitory amino acid cotransporter VGAT. Two variants cosegregated with the phenotype in 2 large GEFS+ families containing 8 and 10 affected individuals, respectively. Six further variants were identified in smaller families with GEFS+ or idiopathic generalized epilepsy (IGE). CONCLUSION: Missense variants in SLC32A1 cause GEFS+ and IGE. These variants are predicted to alter γ-aminobutyric acid (GABA) transport into synaptic vesicles, leading to altered neuronal inhibition. Examination of further epilepsy cohorts will determine the full genotype-phenotype spectrum associated with SLC32A1 variants.


Asunto(s)
Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Variación Genética/genética , Mutación Missense/genética , Convulsiones Febriles/diagnóstico , Convulsiones Febriles/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Femenino , Estudios de Asociación Genética/métodos , Humanos , Masculino , Linaje
19.
Am J Hum Genet ; 108(2): 357-367, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33508234

RESUMEN

Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 × 10-11). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 × 10-15). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease.


Asunto(s)
Proteínas Portadoras/genética , Discapacidades del Desarrollo/genética , Epilepsia/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Espacio Intranuclear/metabolismo , Síndrome Nefrótico/genética , Síndrome Nefrótico/metabolismo , Proteínas del Tejido Nervioso/genética , Adulto , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Línea Celular , Niño , Preescolar , Codón sin Sentido , Discapacidades del Desarrollo/metabolismo , Epilepsia/metabolismo , Femenino , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Humanos , Riñón/metabolismo , Masculino , Ratones , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Podocitos/metabolismo , Secuenciación del Exoma
20.
J Hum Genet ; 66(3): 339-343, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32948840

RESUMEN

Childhood-onset schizophrenia (COS) is a rare form of schizophrenia with an onset before 13 years of age. There is rising evidence that genetic factors play a major role in COS etiology, yet, only a few single gene mutations have been discovered. Here we present a diagnostic whole-exome sequencing (WES) in an Israeli Jewish female with COS and additional neuropsychiatric conditions such as obsessive-compulsive disorder (OCD), anxiety, and aggressive behavior. Variant analysis revealed a de novo novel stop gained variant in GRIA2 gene (NM_000826.4: c.1522 G > T (p.Glu508Ter)). GRIA2 encodes for a subunit of the AMPA sensitive glutamate receptor (GluA2) that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. GluA2 subunit mutations are known to cause variable neurodevelopmental phenotypes including intellectual disability, autism spectrum disorder, epilepsy, and OCD. Our findings support the potential diagnostic role of WES in COS, identify GRIA2 as possible cause to a broad psychiatric phenotype that includes COS as a major manifestation and expand the previously reported GRIA2 loss of function phenotypes.


Asunto(s)
Mutación con Pérdida de Función , Receptores AMPA/genética , Esquizofrenia Infantil/genética , Agresión , Ansiedad/genética , Afasia de Broca/genética , Trastorno por Déficit de Atención con Hiperactividad/genética , Femenino , Humanos , Discapacidades para el Aprendizaje/genética , Trastorno Obsesivo Compulsivo/genética , Receptores AMPA/fisiología , Secuenciación del Exoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...