Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6294, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813862

RESUMEN

In patients with type 2 diabetes, pancreatic beta cells progressively degenerate and gradually lose their ability to produce insulin and regulate blood glucose. Beta cell dysfunction and loss is associated with an accumulation of aggregated forms of islet amyloid polypeptide (IAPP) consisting of soluble prefibrillar IAPP oligomers as well as insoluble IAPP fibrils in pancreatic islets. Here, we describe a human monoclonal antibody selectively targeting IAPP oligomers and neutralizing IAPP aggregate toxicity by preventing membrane disruption and apoptosis in vitro. Antibody treatment in male rats and mice transgenic for human IAPP, and human islet-engrafted mouse models of type 2 diabetes triggers clearance of IAPP oligomers resulting in beta cell protection and improved glucose control. These results provide new evidence for the pathological role of IAPP oligomers and suggest that antibody-mediated removal of IAPP oligomers could be a pharmaceutical strategy to support beta cell function in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Ratones , Masculino , Ratas , Animales , Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Células Secretoras de Insulina/metabolismo , Amiloide/metabolismo , Islotes Pancreáticos/metabolismo
2.
Neurobiol Learn Mem ; 135: 100-114, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27498008

RESUMEN

Memory formation is associated with activity-dependent changes in synaptic plasticity. The mechanisms underlying these processes are complex and involve multiple components. Recent work has implicated the protein KIBRA in human memory, but its molecular functions in memory processes remain not fully understood. Here, we show that a selective overexpression of KIBRA in neurons increases hippocampal long-term potentiation (LTP) but prevents the induction of long-term depression (LTD), and impairs spatial long-term memory in adult mice. KIBRA overexpression increases the constitutive recycling of AMPA receptors containing GluA1 (GluA1-AMPARs), and favors their activity-dependent surface expression. It also results in dramatic dendritic rearrangements in pyramidal neurons both in vitro and in vivo. KIBRA knockdown in contrast, abolishes LTP, decreases GluA1-AMPARs recycling and reduces dendritic arborization. These results establish KIBRA as a novel bidirectional regulator of synaptic and structural plasticity in hippocampal neurons, and of long-term memory, highly relevant to cognitive processes and their pathologies.


Asunto(s)
Proteínas Portadoras/fisiología , Hipocampo/metabolismo , Trastornos de la Memoria/metabolismo , Memoria a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Memoria Espacial/fisiología , Animales , Conducta Animal/fisiología , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Transgénicos , Fosfoproteínas
3.
PLoS One ; 7(9): e45182, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23028832

RESUMEN

Leber's hereditary optic neuropathy (LHON) is an inherited disease caused by mutations in complex I of the mitochondrial respiratory chain. The disease is characterized by loss of central vision due to retinal ganglion cell (RGC) dysfunction and optic nerve atrophy. Despite progress towards a better understanding of the disease, no therapeutic treatment is currently approved for this devastating disease. Idebenone, a short-chain benzoquinone, has shown promising evidence of efficacy in protecting vision loss and in accelerating recovery of visual acuity in patients with LHON. It was therefore of interest to study suitable LHON models in vitro and in vivo to identify anatomical correlates for this protective activity. At nanomolar concentrations, idebenone protected the rodent RGC cell line RGC-5 against complex I dysfunction in vitro. Consistent with the reported dosing and observed effects in LHON patients, we describe that in mice, idebenone penetrated into the eye at concentrations equivalent to those which protected RGC-5 cells from complex I dysfunction in vitro. Consequently, we next investigated the protective effect of idebenone in a mouse model of LHON, whereby mitochondrial complex I dysfunction was caused by exposure to rotenone. In this model, idebenone protected against the loss of retinal ganglion cells, reduction in retinal thickness and gliosis. Furthermore, consistent with this protection of retinal integrity, idebenone restored the functional loss of vision in this disease model. These results support the pharmacological activity of idebenone and indicate that idebenone holds potential as an effective treatment for vision loss in LHON patients.


Asunto(s)
Antioxidantes/farmacología , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/efectos de los fármacos , Atrofia Óptica Hereditaria de Leber/tratamiento farmacológico , Células Ganglionares de la Retina/efectos de los fármacos , Ubiquinona/análogos & derivados , Administración Oral , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Esquema de Medicación , Complejo I de Transporte de Electrón/genética , Humanos , Inyecciones Intravítreas , Masculino , Ratones , Mitocondrias/metabolismo , Mutación , Atrofia Óptica Hereditaria de Leber/inducido químicamente , Atrofia Óptica Hereditaria de Leber/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Rotenona , Ubiquinona/farmacología , Agudeza Visual/efectos de los fármacos
4.
PLoS One ; 7(3): e34047, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479519

RESUMEN

An imbalance between pro-survival and pro-death pathways in brain cells can lead to neuronal cell death and neurodegeneration. While such imbalance is known to be associated with alterations in glutamatergic and Ca(2+) signaling, the underlying mechanisms remain undefined. We identified the protein Ser/Thr phosphatase protein phosphatase-1 (PP1), an enzyme associated with glutamate receptors, as a key trigger of survival pathways that can prevent neuronal death and neurodegeneration in the adult hippocampus. We show that PP1α overexpression in hippocampal neurons limits NMDA receptor overactivation and Ca(2+) overload during an excitotoxic event, while PP1 inhibition favors Ca(2+) overload and cell death. The protective effect of PP1 is associated with a selective dephosphorylation on a residue phosphorylated by CaMKIIα on the NMDA receptor subunit NR2B, which promotes pro-survival pathways and associated transcriptional programs. These results reveal a novel contributor to the mechanisms of neuroprotection and underscore the importance of PP1-dependent dephosphorylation in these mechanisms. They provide a new target for the development of potential therapeutic treatment of neurodegeneration.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Proteína Fosfatasa 1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Glucosa/metabolismo , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades Neurodegenerativas/metabolismo , Oxígeno/metabolismo , Fosforilación , Transducción de Señal , Transcripción Genética
5.
J Neurosci ; 29(41): 13079-89, 2009 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19828821

RESUMEN

Chromatin remodeling through histone posttranslational modifications (PTMs) and DNA methylation has recently been implicated in cognitive functions, but the mechanisms involved in such epigenetic regulation remain poorly understood. Here, we show that protein phosphatase 1 (PP1) is a critical regulator of chromatin remodeling in the mammalian brain that controls histone PTMs and gene transcription associated with long-term memory. Our data show that PP1 is present at the chromatin in brain cells and interacts with enzymes of the epigenetic machinery including HDAC1 (histone deacetylase 1) and histone demethylase JMJD2A (jumonji domain-containing protein 2A). The selective inhibition of the nuclear pool of PP1 in forebrain neurons in transgenic mice is shown to induce several histone PTMs that include not only phosphorylation but also acetylation and methylation. These PTMs are residue-specific and occur at the promoter of genes important for memory formation like CREB (cAMP response element-binding protein) and NF-kappaB (nuclear factor-kappaB). These histone PTMs further co-occur with selective binding of RNA polymerase II and altered gene transcription, and are associated with improved long-term memory for objects and space. Together, these findings reveal a novel mechanism for the epigenetic control of gene transcription and long-term memory in the adult brain that depends on PP1.


Asunto(s)
Código de Histonas/fisiología , Histonas/metabolismo , Memoria/fisiología , Proteína Fosfatasa 1/fisiología , Análisis de Varianza , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Inmunoprecipitación de Cromatina/métodos , Aprendizaje Discriminativo/fisiología , Doxiciclina/farmacología , Ensayo de Inmunoadsorción Enzimática , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Hipocampo/fisiología , Histona Desacetilasas/metabolismo , Técnicas In Vitro , Ratones , Ratones Transgénicos , Neuronas/ultraestructura , Pruebas Neuropsicológicas , Oxidorreductasas N-Desmetilantes/metabolismo , Prosencéfalo/citología , Prosencéfalo/metabolismo , Proteína Fosfatasa 1/genética , Transducción Genética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA