Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Today Bio ; 23: 100837, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37953758

RESUMEN

The advent of nanotechnology has led to an increased interest in nanocarriers as a drug delivery system that is efficient and safe. There have been many studies addressing nano-scale vesicular systems such as liposomes and niosome is a newer generation of vesicular nanocarriers. The niosomes provide a multilamellar carrier for lipophilic and hydrophilic bioactive substances in the self-assembled vesicle, which are composed of non-ionic surfactants in conjunction with cholesterol or other amphiphilic molecules. These non-ionic surfactant vesicles, simply known as niosomes, can be utilized in a wide variety of technological applications. As an alternative to liposomes, niosomes are considered more chemically and physically stable. The methods for preparing niosomes are more economic. Many reports have discussed niosomes in terms of their physicochemical properties and applications as drug delivery systems. As drug carriers, nano-sized niosomes expand the horizons of pharmacokinetics, decreasing toxicity, enhancing drug solvability and bioavailability. In this review, we review the components and fabrication methods of niosomes, as well as their functionalization, characterization, administration routes, and applications in cancer gene delivery, and natural product delivery. We also discuss the limitations and challenges in the development of niosomes, and provide the future perspective of niosomes.

2.
Front Chem ; 10: 957572, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092658

RESUMEN

In recent decades, clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) has become one of the most promising genome-editing tools for therapeutic purposes in biomedical and medical applications. Although the CRISPR/Cas system has truly revolutionized the era of genome editing, the safe and effective delivery of CRISPR/Cas systems represents a substantial challenge that must be tackled to enable the next generation of genetic therapies. In addition, there are some challenges in the in vivo delivery to the targeted cells/tissues. Nanotechnology-based drug delivery systems can be employed to overcome this issue. This review discusses different types and forms of CRISPR/Cas systems and the current CRISPR/Cas delivery systems, including non-viral carriers such as liposomes, polymeric, and gold particles. The focus then turns to the viral nanocarriers which have been recently used as a nanocarrier for CRISPR/Cas delivery.

3.
Med Oncol ; 39(12): 240, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175809

RESUMEN

Recently, nanotechnology is involved in various fields of science, of which medicine is one of the most obvious. The use of nanoparticles in the process of treating and diagnosing diseases has created a novel way of therapeutic strategies with effective mechanisms of action. Also, due to the remarkable progress of personalized medicine, the effort is to reduce the side effects of treatment paths as much as possible and to provide targeted treatments. Therefore, the targeted delivery of drugs is important in different diseases, especially in patients who receive combined drugs, because the delivery of different drug structures requires different systems so that there is no change in the drug and its effectiveness. Niosomes are polymeric nanoparticles that show favorable characteristics in drug delivery. In addition to biocompatibility and high absorption, these nanoparticles also provide the possibility of reducing the drug dosage and targeting the release of drugs, as well as the delivery of both hydrophilic and lipophilic drugs by Niosome vesicles. Since various factors such as components, preparation, and optimization methods are effective in the size and formation of niosomal structures, in this review, the characteristics related to niosome vesicles were first examined and then the in silico tools for designing, prediction, and optimization were explained. Finally, anticancer drugs delivered by niosomes were compared and discussed to be a suitable model for designing therapeutic strategies. In this research, it has been tried to examine all the aspects required for drug delivery engineering using niosomes and finally, by presenting clinical examples of the use of these nanocarriers in cancer, its clinical characteristics were also expressed.


Asunto(s)
Antineoplásicos , Neoplasias , Sistemas de Liberación de Medicamentos , Humanos , Liposomas , Neoplasias/tratamiento farmacológico , Medicina de Precisión
4.
Mol Biol Rep ; 49(5): 3597-3608, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35235156

RESUMEN

BACKGROUND: In this study, the optimized niosomal formulation containing paclitaxel using non-ionic surfactants and cholesterol was designed and its cytotoxic effects against different breast cancer cell lines and apoptosis gene expression analysis were also investigated. METHODS AND RESULTS: Due to enhancing equation variables, the Box-Behnken method has been applied. Lipid/drug molar ratio, the amounts of Span 60, and cholesterol were selected as the target for optimization. The particle size of niosome loaded paclitaxel and entrapment efficiency proportion have been considered in the role of dependent variables. Then the cytotoxic activity of the optimized formulation was evaluated using an MTT assay against different breast cancer cell lines including MCF-7, T-47D, SkBr3, and MDA-MB-231. The expression level of Bax and Bcl-2 apoptosis genes was determined by Real-Time PCR. In this study, the optimized niosomal formulation revealed that the synthesized niosomes had a spherical appearance and had an average size of 192.73 ± 5.50 nm so that the percentage of drug loading was 94.71 ± 1.56%. Moreover, this formulation showed a controlled and slowed release of paclitaxel at different pH (7.4, 6.5, and 5.4). The cytotoxicity results demonstrated that cell viability in all concentrations of niosome loaded paclitaxel had profound cytotoxic effects on all studied breast cancer cell lines compared to the free paclitaxel (p < 0.05). In addition, the expression of apoptosis genes was much higher than that of free paclitaxel indicating the susceptibility of cells to apoptosis. CONCLUSIONS: As a result, niosomal formulations containing paclitaxel can be used as a new drug delivery system to increase cytotoxicity and treatment of breast cancer in the upcoming future.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Colesterol , Femenino , Expresión Génica , Humanos , Liposomas , Células MCF-7 , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...