Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Methods ; 4(7): 100803, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959888

RESUMEN

High-sensitivity nanoflow liquid chromatography (nLC) is seldom employed in untargeted metabolomics because current sample preparation techniques are inefficient at preventing nanocapillary column performance degradation. Here, we describe an nLC-based tandem mass spectrometry workflow that enables seamless joint analysis and integration of metabolomics (including lipidomics) and proteomics from the same samples without instrument duplication. This workflow is based on a robust solid-phase micro-extraction step for routine sample cleanup and bioactive molecule enrichment. Our method, termed proteomic and nanoflow metabolomic analysis (PANAMA), improves compound resolution and detection sensitivity without compromising the depth of coverage as compared with existing widely used analytical procedures. Notably, PANAMA can be applied to a broad array of specimens, including biofluids, cell lines, and tissue samples. It generates high-quality, information-rich metabolite-protein datasets while bypassing the need for specialized instrumentation.


Asunto(s)
Metabolómica , Proteómica , Espectrometría de Masas en Tándem , Proteómica/métodos , Metabolómica/métodos , Cromatografía Liquida , Humanos , Espectrometría de Masas en Tándem/métodos , Animales , Nanotecnología/métodos , Cromatografía Líquida con Espectrometría de Masas
2.
Front Cardiovasc Med ; 9: 966968, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093146

RESUMEN

Although the prevalence of heart failure with preserved ejection fraction (HFpEF) is increasing, evidence-based therapies for HFpEF remain limited, likely due to an incomplete understanding of this disease. This study sought to identify the cardiac-specific features of protein and phosphoprotein changes in a murine model of HFpEF using mass spectrometry. HFpEF mice demonstrated moderate hypertension, left ventricle (LV) hypertrophy, lung congestion and diastolic dysfunction. Proteomics analysis of the LV tissue showed that 897 proteins were differentially expressed between HFpEF and Sham mice. We observed abundant changes in sarcomeric proteins, mitochondrial-related proteins, and NAD-dependent protein deacetylase sirtuin-3 (SIRT3). Upregulated pathways by GSEA analysis were related to immune modulation and muscle contraction, while downregulated pathways were predominantly related to mitochondrial metabolism. Western blot analysis validated SIRT3 downregulated cardiac expression in HFpEF vs. Sham (0.8 ± 0.0 vs. 1.0 ± 0.0; P < 0.001). Phosphoproteomics analysis showed that 72 phosphosites were differentially regulated between HFpEF and Sham LV. Aberrant phosphorylation patterns mostly occurred in sarcomere proteins and nuclear-localized proteins associated with contractile dysfunction and cardiac hypertrophy. Seven aberrant phosphosites were observed at the z-disk binding region of titin. Additional agarose gel analysis showed that while total titin cardiac expression remained unaltered, its stiffer N2B isoform was significantly increased in HFpEF vs. Sham (0.144 ± 0.01 vs. 0.127 ± 0.01; P < 0.05). In summary, this study demonstrates marked changes in proteins related to mitochondrial metabolism and the cardiac contractile apparatus in HFpEF. We propose that SIRT3 may play a role in perpetuating these changes and may be a target for drug development in HFpEF.

3.
Genes (Basel) ; 13(7)2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35885999

RESUMEN

(1) Background: Barrett's esophagus is a major risk factor for esophageal adenocarcinoma. In this pilot study, we employed precision mass spectrometry to map global (phospho)protein perturbations in Barrett's esophagus lesions and adjacent normal tissue to glean insights into disease progression. (2) Methods: Biopsies were collected from two small but independent cohorts. Comparative analyses were performed between Barrett's esophagus samples and adjacent matched (normal) tissues from patients with known pathology, while specimens from healthy patients served as additional controls. (3) Results: We identified and quantified 6810 proteins and 6395 phosphosites in the discovery cohort, revealing hundreds of statistically significant differences in protein abundances and phosphorylation states. We identified a robust proteomic signature that accurately classified the disease status of samples from the independent patient cohorts. Pathway-level analysis of the phosphoproteomic profiles revealed the dysregulation of specific cellular processes, including DNA repair, in Barrett's esophagus relative to paired controls. Comparative analysis with previously published transcriptomic profiles provided independent evidence in support of these preliminary findings. (4) Conclusions: This pilot study establishes the feasibility of using unbiased quantitative phosphoproteomics to identify molecular perturbations associated with disease progression in Barrett's esophagus to define potentially clinically actionable targets warranting further assessment.


Asunto(s)
Esófago de Barrett , Esófago de Barrett/genética , Esófago de Barrett/metabolismo , Esófago de Barrett/patología , Progresión de la Enfermedad , Estudios de Factibilidad , Humanos , Proyectos Piloto , Proteómica
5.
Cell Rep ; 39(3): 110714, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35421379

RESUMEN

The human immunological mechanisms defining the clinical outcome of SARS-CoV-2 infection remain elusive. This knowledge gap is mostly driven by the lack of appropriate experimental platforms recapitulating human immune responses in a controlled human lung environment. Here, we report a mouse model (i.e., HNFL mice) co-engrafted with human fetal lung xenografts (fLX) and a myeloid-enhanced human immune system to identify cellular and molecular correlates of lung protection during SARS-CoV-2 infection. Unlike mice solely engrafted with human fLX, HNFL mice are protected against infection, severe inflammation, and histopathological phenotypes. Lung tissue protection from infection and severe histopathology associates with macrophage infiltration and differentiation and the upregulation of a macrophage-enriched signature composed of 11 specific genes mainly associated with the type I interferon signaling pathway. Our work highlights the HNFL model as a transformative platform to investigate, in controlled experimental settings, human myeloid immune mechanisms governing lung tissue protection during SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Animales , COVID-19/genética , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Pulmón/patología , Macrófagos , Ratones , SARS-CoV-2
6.
PLoS Pathog ; 18(2): e1010268, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35120176

RESUMEN

Next generation sequencing has revealed the presence of numerous RNA viruses in animal reservoir hosts, including many closely related to known human pathogens. Despite their zoonotic potential, most of these viruses remain understudied due to not yet being cultured. While reverse genetic systems can facilitate virus rescue, this is often hindered by missing viral genome ends. A prime example is Lloviu virus (LLOV), an uncultured filovirus that is closely related to the highly pathogenic Ebola virus. Using minigenome systems, we complemented the missing LLOV genomic ends and identified cis-acting elements required for LLOV replication that were lacking in the published sequence. We leveraged these data to generate recombinant full-length LLOV clones and rescue infectious virus. Similar to other filoviruses, recombinant LLOV (rLLOV) forms filamentous virions and induces the formation of characteristic inclusions in the cytoplasm of the infected cells, as shown by electron microscopy. Known target cells of Ebola virus, including macrophages and hepatocytes, are permissive to rLLOV infection, suggesting that humans could be potential hosts. However, inflammatory responses in human macrophages, a hallmark of Ebola virus disease, are not induced by rLLOV. Additional tropism testing identified pneumocytes as capable of robust rLLOV and Ebola virus infection. We also used rLLOV to test antivirals targeting multiple facets of the replication cycle. Rescue of uncultured viruses of pathogenic concern represents a valuable tool in our arsenal for pandemic preparedness.


Asunto(s)
Ebolavirus/genética , Infecciones por Filoviridae/virología , Filoviridae/genética , Replicación Viral , Animales , Línea Celular , Chlorocebus aethiops , Prueba de Complementación Genética , Genoma Viral , Fiebre Hemorrágica Ebola/virología , Interacciones Microbiota-Huesped , Humanos , Cuerpos de Inclusión/virología , Células Madre Pluripotentes Inducidas/virología , Macrófagos/virología , ARN Viral , Genética Inversa , Células Vero , Virión/genética
7.
Mol Cell Proteomics ; 21(1): 100189, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34933084

RESUMEN

Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.


Asunto(s)
Neoplasias de la Mama , Proteómica , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Redes y Vías Metabólicas , Metabolómica , Mapas de Interacción de Proteínas
8.
Sci Rep ; 11(1): 20365, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645915

RESUMEN

Most strategies to treat obesity-related disorders have involved prevention of diet-induced weight gain in lean mice. Treatment of obese individuals will require therapies that reverse the detrimental effects of excess body weight. Cyclin-dependent kinases have been shown to contribute to obesity and its adverse complications. Here, we show that roscovitine; a an orally available cyclin-dependent kinase inhibitor; given to male mice during the last six weeks of a 19-week high fat diet, reduced weight gain and prevented accompanying insulin resistance, hepatic steatosis, visceral adipose tissue (eWAT) inflammation/fibrosis as well as restored insulin secretion and enhanced whole body energy expenditure. Proteomics and phosphoproteomics analysis of eWAT demonstrated that roscovitine suppressed expression of peptides and phosphopeptides linked to inflammation and extracellular matrix proteins. It also identified 17 putative protein kinases perturbed by roscovitine, including CMGC kinases, AGC kinases and CAMK kinases. Pathway enrichment analysis showed that lipid metabolism, TCA cycle, fatty acid beta oxidation and creatine biosynthesis are enriched following roscovitine treatment. For brown adipose tissue (BAT), analysis of upstream kinases controlling the phosphoproteome revealed two major kinase groups, AGC and CMGC kinases. Among the top enriched pathways were insulin signaling, regulation of lipolysis in adipocytes, thyroid hormone signaling, thermogenesis and cAMP-PKG signaling. We conclude that roscovitine is effective at preventing prolonged diet-induced metabolic disruption and restoring mitochondrial activity in BAT and eWAT.


Asunto(s)
Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Dieta Alta en Grasa/efectos adversos , Enfermedades Metabólicas , Obesidad , Roscovitina/farmacología , Sistemas de Mensajero Secundario/efectos de los fármacos , Animales , Lipólisis/efectos de los fármacos , Masculino , Enfermedades Metabólicas/inducido químicamente , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Ratones , Obesidad/inducido químicamente , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Termogénesis/efectos de los fármacos
9.
Cell Rep ; 36(9): 109636, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34469722

RESUMEN

Alveolar epithelial type 2 cell (AEC2) dysfunction is implicated in the pathogenesis of adult and pediatric interstitial lung disease (ILD), including idiopathic pulmonary fibrosis (IPF); however, identification of disease-initiating mechanisms has been impeded by inability to access primary AEC2s early on. Here, we present a human in vitro model permitting investigation of epithelial-intrinsic events culminating in AEC2 dysfunction, using patient-specific induced pluripotent stem cells (iPSCs) carrying an AEC2-exclusive disease-associated variant (SFTPCI73T). Comparing syngeneic mutant versus gene-corrected iPSCs after differentiation into AEC2s (iAEC2s), we find that mutant iAEC2s accumulate large amounts of misprocessed and mistrafficked pro-SFTPC protein, similar to in vivo changes, resulting in diminished AEC2 progenitor capacity, perturbed proteostasis, altered bioenergetic programs, time-dependent metabolic reprogramming, and nuclear factor κB (NF-κB) pathway activation. Treatment of SFTPCI73T-expressing iAEC2s with hydroxychloroquine, a medication used in pediatric ILD, aggravates the observed perturbations. Thus, iAEC2s provide a patient-specific preclinical platform for modeling the epithelial-intrinsic dysfunction at ILD inception.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Pulmonares Intersticiales/genética , Proteína C Asociada a Surfactante Pulmonar/genética , Células Epiteliales Alveolares/patología , Animales , Línea Celular , Proliferación Celular , Metabolismo Energético , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/patología , Mediadores de Inflamación/metabolismo , Enfermedades Pulmonares Intersticiales/metabolismo , Enfermedades Pulmonares Intersticiales/patología , Ratones Noqueados , Mutación , FN-kappa B/metabolismo , Fenotipo , Proteostasis , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Transducción de Señal
10.
Molecules ; 26(16)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34443676

RESUMEN

Spider silk has outstanding mechanical properties, rivaling some of the best materials on the planet. Biochemical analyses of tubuliform silk have led to the identification of TuSp1, egg case protein 1, and egg case protein 2. TuSp1 belongs to the spidroin superfamily, containing a non-repetitive N- and C-terminal domain and internal block repeats. ECP1 and ECP2, which lack internal block repeats and sequence similarities to the highly conserved N- and C-terminal domains of spidroins, have cysteine-rich N-terminal domains. In this study, we performed an in-depth proteomic analysis of tubuliform glands, spinning dope, and egg sacs, which led to the identification of a novel molecular constituent of black widow tubuliform silk, referred to as egg case protein 3 or ECP3. Analysis of the translated ECP3 cDNA predicts a low molecular weight protein of 11.8 kDa. Real-time reverse transcription-quantitative PCR analysis performed with different silk-producing glands revealed ECP3 mRNA is predominantly expressed within tubuliform glands of spiders. Taken together, these findings reveal a novel protein that is secreted into black widow spider tubuliform silk.


Asunto(s)
Araña Viuda Negra/química , Proteínas del Huevo/química , Fibroínas/química , Secuencia de Aminoácidos , Estructuras Animales/metabolismo , Animales , Proteínas del Huevo/genética , Proteínas del Huevo/metabolismo , Femenino , Regulación de la Expresión Génica , Óvulo/metabolismo , Óvulo/ultraestructura , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espectrometría de Masas en Tándem
12.
Mol Cell ; 80(6): 1104-1122.e9, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33259812

RESUMEN

Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , COVID-19/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , SARS-CoV-2/metabolismo , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Animales , Antivirales , COVID-19/genética , COVID-19/patología , Chlorocebus aethiops , Efecto Citopatogénico Viral , Citoesqueleto , Evaluación Preclínica de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/virología , Fosfoproteínas/genética , Transporte de Proteínas , Proteoma/genética , SARS-CoV-2/genética , Transducción de Señal , Células Vero , Tratamiento Farmacológico de COVID-19
13.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927629

RESUMEN

Dengue is the most burdensome vector-borne viral disease in the world. Dengue virus (DENV), the etiological cause of dengue, is transmitted primarily by the Aedes aegypti mosquito. Like any arbovirus, the transmission cycle of dengue involves the complex interactions of a multitude of human and mosquito factors. One point during this transmission cycle that is rich in these interactions is the biting event by the mosquito, upon which its saliva is injected into the host. A number of components in mosquito saliva have been shown to play a pivotal role in the transmission of dengue, however one such component that is not as well characterized is extracellular vesicles. Here, using high-performance liquid chromatography in tandem with mass spectrometry, we show that dengue infection altered the protein cargo of Aedes aegypti extracellular vesicles, resulting in the packaging of proteins with infection-enhancing ability. Our results support the presence of an infection-dependent pro-viral protein packaging strategy that uses the differential packaging of pro-viral proteins in extracellular vesicles of Ae. aegypti saliva to promote transmission. These studies represent the first investigation into the function of Ae. aegypti extracellular vesicle cargo during dengue infection.


Asunto(s)
Aedes/metabolismo , Dengue/transmisión , Vesículas Extracelulares/metabolismo , Proteínas de Insectos/metabolismo , Mosquitos Vectores/metabolismo , Aedes/virología , Animales , Células Cultivadas , Dengue/virología , Virus del Dengue , Femenino , Humanos , Mosquitos Vectores/virología
14.
Cell Stem Cell ; 27(4): 663-678.e8, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32891189

RESUMEN

Mutant KRAS is a common driver in epithelial cancers. Nevertheless, molecular changes occurring early after activation of oncogenic KRAS in epithelial cells remain poorly understood. We compared transcriptional changes at single-cell resolution after KRAS activation in four sample sets. In addition to patient samples and genetically engineered mouse models, we developed organoid systems from primary mouse and human induced pluripotent stem cell-derived lung epithelial cells to model early-stage lung adenocarcinoma. In all four settings, alveolar epithelial progenitor (AT2) cells expressing oncogenic KRAS had reduced expression of mature lineage identity genes. These findings demonstrate the utility of our in vitro organoid approaches for uncovering the early consequences of oncogenic KRAS expression. This resource provides an extensive collection of datasets and describes organoid tools to study the transcriptional and proteomic changes that distinguish normal epithelial progenitor cells from early-stage lung cancer, facilitating the search for targets for KRAS-driven tumors.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Animales , Humanos , Pulmón , Ratones , Proteómica , Proteínas Proto-Oncogénicas p21(ras)/genética
16.
Molecules ; 25(14)2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32674428

RESUMEN

Spider dragline silk represents a biomaterial with outstanding mechanical properties, possessing high-tensile strength and toughness. In black widows at least eight different proteins have been identified as constituents of dragline silk. These represent major ampullate spidroins MaSp1, MaSp2, MaSp', and several low-molecular weight cysteine-rich protein (CRP) family members, including CRP1, CRP2, and CRP4. Molecular modeling predicts that CRPs contain a cystine slipknot motif, but experimental evidence to support this assertion remains to be reported. To advance scientific knowledge regarding CRP function, we recombinantly expressed and purified CRP1 and CRP4 from bacteria and investigated their secondary structure using circular dichroism (CD) under different chemical and physical conditions. We demonstrate by far-UV CD spectroscopy that these proteins contain similar secondary structure, having substantial amounts of random coil conformation, followed by lower levels of beta sheet, alpha helical and beta turn structures. CRPs are thermally and pH stable; however, treatment with reagents that disrupt disulfide bonds impact their structural conformations. Cross-linking mass spectrometry (XL-MS) data also support computational models of CRP1. Taken together, the chemical and thermal stability of CRPs, the cross-linking data, coupled with the structural sensitivity to reducing agents, are experimentally consistent with the supposition CRPs are cystine slipknot proteins.


Asunto(s)
Araña Viuda Negra/química , Proteínas de Insectos/química , Modelos Moleculares , Conformación Proteica , Seda/química , Secuencia de Aminoácidos , Animales , Concentración de Iones de Hidrógeno , Proteínas de Insectos/aislamiento & purificación , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes , Espectrometría de Masas en Tándem
17.
Arch Toxicol ; 94(9): 3087-3103, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32683515

RESUMEN

Triphenyl phosphate (TPhP) is an environmental PPARγ ligand, and growing evidence suggests that it is a metabolic disruptor. We have shown previously that the structurally similar ligand, tributyltin, does not induce brite adipocyte gene expression. Here, using in vivo and in vitro models, we tested the hypothesis that TPhP is a selective PPARγ ligand, which fails to induce brite adipogenesis. C57BL/6 J male mice were fed either a low or very high-fat diet for 13 weeks. From weeks 7-13, mice were injected intraperitoneally, daily, with vehicle, rosiglitazone (Rosi), or TPhP (10 mg/kg). Compared to Rosi, TPhP did not induce expression of browning-related genes (e.g. Elovl3, Cidea, Acaa2, CoxIV) in mature adipocytes isolated from inguinal adipose. To determine if this resulted from an effect directly on the adipocytes, 3T3-L1 cells and primary human preadipocytes were differentiated into adipocytes in the presence of Rosi or TPhP. Rosi, but not TPhP, induced expression of brite adipocyte genes, mitochondrial biogenesis and cellular respiration. Further, Rosi and TPhP-induced distinct proteomes and phosphoproteomes; Rosi enriched more regulatory pathways related to fatty acid oxidation and mitochondrial proteins. We assessed the role of phosphorylation of PPARγ in these differences in 3T3-L1 cells. Only Rosi protected PPARγ from phosphorylation at Ser273. TPhP gained the ability to stimulate brite adipocyte gene expression in the presence of the CDK5 inhibitor and in 3T3-L1 cells expressing alanine at position 273. We conclude that TPhP is a selective PPARγ modulator that fails to protect PPARγ from phosphorylation at ser273.


Asunto(s)
Adipocitos Beige/efectos de los fármacos , Organofosfatos/toxicidad , PPAR gamma/metabolismo , Células 3T3-L1 , Adipocitos , Adipogénesis/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Diferenciación Celular , Ratones , Rosiglitazona/farmacología , Pruebas de Toxicidad
18.
Chem Biol Drug Des ; 96(5): 1292-1304, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32516846

RESUMEN

In this paper, we report the synthesis of a phenanthroline and neomycin conjugate (7). Compound 7 binds to a human telomeric G-quadruplex (G1) with a higher affinity compared with its parent compounds (phenanthroline and neomycin), which is determined by several biophysical studies. Compound 7 shows good selectivity for G-quadruplex (G4) DNA over duplex DNA. The binding of 7 with G1 is predominantly enthalpy-driven, and the binding stoichiometry of 7 with G1 is one for the tight-binding event as determined by ESI mass spectrometry. A plausible binding mode is a synergistic effect of end-stacking and groove interactions, as indicated by docking studies. Compound 7 can inhibit human telomerase activity at low micromolar concentrations, which is more potent than previously reported 5-substituted phenanthroline derivatives.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , G-Cuádruplex , Neomicina/farmacología , Fenantrolinas/metabolismo , Telomerasa/antagonistas & inhibidores , Humanos , Ligandos , Simulación de Dinámica Molecular , Termodinámica
19.
Cell Syst ; 10(4): 333-350.e14, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32325033

RESUMEN

Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global "interactome" comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/metabolismo , Conectoma/métodos , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas de Unión al ADN/genética , Aprendizaje Automático , Mamíferos/fisiología , Espectrometría de Masas/métodos , Ratones , Mutación/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-31786479

RESUMEN

While the response to acute stress is adaptive in nature, repeated or chronic stress can impact an animal's fitness by depleting its energy stores and suppressing immune function and reproduction. This can be especially deleterious for species that rely on energy reserves to fuel key life history stages (e.g. reproduction), already experience physiological extremes (e.g. fasting), and/or have undergone significant population declines, such as many marine mammals. However, identifying chronically stressed individuals is difficult due to the practical challenges to sample collection from large aquatic animals and a paucity of information on downstream consequences of the stress response. We previously simulated repeated stress by ACTH administration in a model marine mammal, the northern elephant seal, and showed that changes in blubber gene expression, but not circulating cortisol levels, could distinguish between single and repeated responses to ACTH. Here, we profiled changes in the proteome of the same blubber cell population and identified a set of differentially expressed proteins that included extracellular matrix components, heat shock and mitochondrial proteins, metabolic enzymes, and metabolite transporters. Differentially expressed proteins and genes shared similar functions that suggest that repeated corticosteroid elevation may affect blubber tissue proteostasis, mitochondrial activity, adipogenesis, and metabolism in marine mammals. For marine mammal species from which blubber biopsies, but not blood can be obtained by remote sampling, measurement of abundance of such proteins may serve as a novel method for identifying chronically stressed animals.


Asunto(s)
Hormona Adrenocorticotrópica/metabolismo , Proteoma/metabolismo , Phocidae/fisiología , Tejido Adiposo/metabolismo , Hormona Adrenocorticotrópica/administración & dosificación , Animales , Animales Salvajes/fisiología , Femenino , Proteoma/análisis , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA