Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 218(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34709350

RESUMEN

Chronic viral infections are associated with hematopoietic suppression, bone marrow (BM) failure, and hematopoietic stem cell (HSC) exhaustion. However, how persistent viral challenge and inflammatory responses target BM tissues and perturb hematopoietic competence remains poorly understood. Here, we combine functional analyses with advanced 3D microscopy to demonstrate that chronic infection with lymphocytic choriomeningitis virus leads to (1) long-lasting decimation of the BM stromal network of mesenchymal CXCL12-abundant reticular cells, (2) proinflammatory transcriptional remodeling of remaining components of this key niche subset, and (3) durable functional defects and decreased competitive fitness in HSCs. Mechanistically, BM immunopathology is elicited by virus-specific, activated CD8 T cells, which accumulate in the BM via interferon-dependent mechanisms. Combined antibody-mediated inhibition of type I and II IFN pathways completely preempts degeneration of CARc and protects HSCs from chronic dysfunction. Hence, viral infections and ensuing immune reactions durably impact BM homeostasis by persistently decreasing the competitive fitness of HSCs and disrupting essential stromal-derived, hematopoietic-supporting cues.


Asunto(s)
Médula Ósea/virología , Células Madre Hematopoyéticas/patología , Células Madre Hematopoyéticas/virología , Coriomeningitis Linfocítica/patología , Animales , Médula Ósea/metabolismo , Médula Ósea/patología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/virología , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Enfermedad Crónica , Regulación de la Expresión Génica , Trasplante de Células Madre Hematopoyéticas , Interferones/metabolismo , Coriomeningitis Linfocítica/metabolismo , Coriomeningitis Linfocítica/virología , Ratones Endogámicos C57BL , Ratones Mutantes , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/inmunología , Receptor de Interferón alfa y beta/metabolismo
2.
Nat Mach Intell ; 3(9): 799-811, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34541455

RESUMEN

Fluorescence microscopy allows for a detailed inspection of cells, cellular networks, and anatomical landmarks by staining with a variety of carefully-selected markers visualized as color channels. Quantitative characterization of structures in acquired images often relies on automatic image analysis methods. Despite the success of deep learning methods in other vision applications, their potential for fluorescence image analysis remains underexploited. One reason lies in the considerable workload required to train accurate models, which are normally specific for a given combination of markers, and therefore applicable to a very restricted number of experimental settings. We herein propose Marker Sampling and Excite - a neural network approach with a modality sampling strategy and a novel attention module that together enable (i) flexible training with heterogeneous datasets with combinations of markers and (ii) successful utility of learned models on arbitrary subsets of markers prospectively. We show that our single neural network solution performs comparably to an upper bound scenario where an ensemble of many networks is naïvely trained for each possible marker combination separately. In addition, we demonstrate the feasibility of this framework in high-throughput biological analysis by revising a recent quantitative characterization of bone marrow vasculature in 3D confocal microscopy datasets and further confirm the validity of our approach on an additional, significantly different dataset of microvessels in fetal liver tissues. Not only can our work substantially ameliorate the use of deep learning in fluorescence microscopy analysis, but it can also be utilized in other fields with incomplete data acquisitions and missing modalities.

4.
Nat Cell Biol ; 22(1): 38-48, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31871321

RESUMEN

The bone marrow constitutes the primary site for life-long blood production and skeletal regeneration. However, its cellular and spatial organization remains controversial. Here, we combine single-cell and spatially resolved transcriptomics to systematically map the molecular, cellular and spatial composition of distinct bone marrow niches. This allowed us to transcriptionally profile all major bone-marrow-resident cell types, determine their localization and clarify sources of pro-haematopoietic factors. Our data demonstrate that Cxcl12-abundant-reticular (CAR) cell subsets (Adipo-CAR and Osteo-CAR) differentially localize to sinusoidal and arteriolar surfaces, act locally as 'professional cytokine-secreting cells' and thereby establish peri-vascular micro-niches. Importantly, the three-dimensional bone-marrow organization can be accurately inferred from single-cell transcriptome data using the RNA-Magnet algorithm described here. Together, our study reveals the cellular and spatial organization of bone marrow niches and offers a systematic approach to dissect the complex organization of whole organs.


Asunto(s)
Células de la Médula Ósea/metabolismo , Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Transcriptoma/fisiología , Animales , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Nicho de Células Madre/fisiología
5.
Ann N Y Acad Sci ; 1466(1): 5-16, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31368140

RESUMEN

Hematopoietic stem cells (HSCs) have been long proposed to reside in defined anatomical locations within bone marrow (BM) tissues in direct contact or close proximity to nurturing cell types. Imaging techniques that allow the simultaneous mapping of HSCs and interacting cell types have been central to the discovery of basic principles of these so-called HSC niches. Despite major progress in the field, a quantitative and comprehensive model of the cellular and molecular components that define these specialized microenvironments is lacking to date, and uncertainties remain on the preferential localization of HSCs in the context of complex BM tissue landscapes. Recent technological breakthroughs currently allow for the quantitative spatial analysis of BM cellular components with extraordinary precision. Here, we critically discuss essential technical aspects related to imaging approaches, image processing tools, and spatial statistics, which constitute the three basic elements of rigorous quantitative spatial analyses of HSC niches in the BM microenvironment.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Molecular/métodos , Nicho de Células Madre/fisiología , Animales , Médula Ósea/diagnóstico por imagen , Médula Ósea/fisiología , Microambiente Celular/fisiología , Diagnóstico por Imagen/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/tendencias , Invenciones/tendencias , Imagen Molecular/tendencias , Análisis Espacial
6.
Cell Rep ; 29(10): 3313-3330.e4, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31801092

RESUMEN

Bone marrow (BM) stromal cells provide the regulatory framework for hematopoiesis and contribute to developmental stage-specific niches, such as those preserving hematopoietic stem cells. Despite advances in our understanding of stromal function, little is known about the transcriptional changes that this compartment undergoes throughout lifespan and during adaptation to stress. Using RNA sequencing, we perform transcriptional analyses of four principal stromal subsets, namely CXCL12-abundant reticular, platelet-derived growth factor receptor (PDGFR)-α+Sca1+, sinusoidal, and arterial endothelial cells, from early postnatal, adult, and aged mice. Our data reveal (1) molecular fingerprints defining cell-specific anatomical and functional features, (2) a radical reprogramming of pro-hematopoietic, immune, and matrisomic transcriptional programs during the transition from juvenile stages to adulthood, and (3) the aging-driven progressive upregulation of pro-inflammatory gene expression in stroma. We further demonstrate that transcriptomic pathways elicited in vivo by prototypic microbial molecules are largely recapitulated during aging, thereby supporting the inflammatory basis of age-related adaptations of BM hematopoietic function.


Asunto(s)
Envejecimiento/genética , Médula Ósea/fisiología , Microambiente Celular/genética , Desarrollo Embrionario/genética , Inflamación/genética , Células Madre Mesenquimatosas/fisiología , Transcriptoma/genética , Animales , Células de la Médula Ósea/fisiología , Diferenciación Celular/genética , Células Cultivadas , Quimiocina CXCL12/genética , Células Endoteliales/fisiología , Perfilación de la Expresión Génica/métodos , Hematopoyesis/genética , Células Madre Hematopoyéticas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Nicho de Células Madre/genética
7.
Nat Commun ; 9(1): 2532, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29955044

RESUMEN

Sinusoidal endothelial cells and mesenchymal CXCL12-abundant reticular cells are principal bone marrow stromal components, which critically modulate haematopoiesis at various levels, including haematopoietic stem cell maintenance. These stromal subsets are thought to be scarce and function via highly specific interactions in anatomically confined niches. Yet, knowledge on their abundance, global distribution and spatial associations remains limited. Using three-dimensional quantitative microscopy we show that sinusoidal endothelial and mesenchymal reticular subsets are remarkably more abundant than estimated by conventional flow cytometry. Moreover, both cell types assemble in topologically complex networks, associate to extracellular matrix and pervade marrow tissues. Through spatial statistical methods we challenge previous models and demonstrate that even in the absence of major specific interaction forces, virtually all tissue-resident cells are invariably in physical contact with, or close proximity to, mesenchymal reticular and sinusoidal endothelial cells. We further show that basic structural features of these stromal components are preserved during ageing.


Asunto(s)
Envejecimiento/fisiología , Células de la Médula Ósea/ultraestructura , Fémur/citología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/ultraestructura , Células Madre Mesenquimatosas/ultraestructura , Animales , Médula Ósea/diagnóstico por imagen , Médula Ósea/fisiología , Células de la Médula Ósea/fisiología , Recuento de Células , Movimiento Celular , Microambiente Celular/fisiología , Células Endoteliales/fisiología , Células Endoteliales/ultraestructura , Matriz Extracelular/química , Matriz Extracelular/ultraestructura , Fémur/diagnóstico por imagen , Fémur/fisiología , Células Madre Hematopoyéticas/fisiología , Imagenología Tridimensional/estadística & datos numéricos , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos C57BL , Microscopía/métodos , Nicho de Células Madre
8.
Nat Methods ; 12(7): 645-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25984699

RESUMEN

Spatially confined green-to-red photoconversion of fluorescent proteins with high-power, pulsed laser illumination is negligible, thus precluding optical selection of single cells in vivo. We report primed conversion, in which low-power, dual-wavelength, continuous-wave illumination results in pronounced photoconversion. With a straightforward addition to a conventional confocal microscope, we show confined primed conversion in living zebrafish and reveal the complex anatomy of individual neurons packed between neighboring cells.


Asunto(s)
Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Neuronas/citología , Animales , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA