Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochimie ; 111: 125-34, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25668210

RESUMEN

Numerous studies have reported the beneficial effects of antioxidants in human diseases. Among their biological effects, a majority of antioxidants scavenge reactive radicals in the body, thereby reducing oxidative stress that is associated with the pathogenesis of many diseases. Antioxidant dendrimers are a new class of potent antioxidant compounds reported recently. In this study, six polyphenol-based antioxidant dendrimers with or without electron donating groups (methoxy group) were synthesized in order to elucidate the influence of electron donating groups (EDG) on their antioxidant activities. Syringaldehyde (2 ortho methoxy groups), vanillin (1 ortho methoxy group), and 4-hydroxybenzaldehyde (0 methoxy group) were derivatized with propargylamine to form building blocks for the dendrimers. All the six dendrimers contain polyether cores, which were synthesized by attaching pentaerythritol and methyl α-d-glucopyranoside to in-house prepared spacer units. To prepare generation 1 antioxidant dendrimers, microwave energy and granulated metallic copper catalyst were used to link the cores and building blocks together via alkyne-azide 1,3-cycloaddition click chemistry. These reaction conditions resulted in high yields of the target dendrimers that were free from copper contamination. Based on DPPH antioxidant assay, antioxidant dendrimers decorated with syringaldehyde and vanillin exhibited over 70- and 170-fold increase in antioxidant activity compared to syringaldehyde and vanillin, respectively. The antioxidant activity of dendrimers increased with increasing number of EDG groups. Similar results were obtained when the dendrimers were used to protect DNA and human LDL against organic carbon and nitrogen-based free radicals. In addition, the antioxidant dendrimers did not show any pro-oxidant activity on DNA in the presence of physiological amounts of copper. Although the dendrimers showed potent antioxidant activities against carbon and nitrogen free radicals, EPR and DNA protection studies revealed lack of effectiveness of these dendrimers against hydroxyl radicals. The dendrimers were not cytotoxic to CHO-K1 cells.


Asunto(s)
Antioxidantes , ADN , Dendrímeros , Lipoproteínas LDL , Polifenoles , Especies Reactivas de Oxígeno , Animales , Antioxidantes/química , Antioxidantes/farmacología , Células CHO , Cricetinae , Cricetulus , ADN/química , ADN/metabolismo , Dendrímeros/química , Dendrímeros/farmacología , Humanos , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Oxidación-Reducción/efectos de los fármacos , Polifenoles/química , Polifenoles/farmacología , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo
2.
Free Radic Biol Med ; 50(8): 918-25, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20977937

RESUMEN

It is well known that antioxidants have protective effects against oxidative stress. Unfortunately, in the presence of transition metals, antioxidants, including polyphenols with potent antioxidant activities, may also exhibit pro-oxidant effects, which may irreversibly damage DNA. Therefore, antioxidants with strong free radical-scavenging abilities and devoid of pro-oxidant effects would be of immense biological importance. We report two antioxidant dendrimers with a surface rich in multiple phenolic hydroxyl groups, benzylic hydrogens, and electron-donating ring substituents that contribute to their potent free radical-quenching properties. To minimize their pro-oxidant effects, the dendrimers were designed with a metal-chelating tris(2-aminoethyl)amine (TREN) core. The dendritic antioxidants were prepared by attachment of six syringaldehyde or vanillin molecules to TREN by reductive amination. They exhibited potent radical-scavenging properties: 5 times stronger than quercetin and 15 times more potent than Trolox according to the 1,1-diphenyl-2-picrylhydrazyl assay. The antioxidant dendrimers also protected low-density lipoprotein, lysozyme, and DNA against 2,2'-azobis(2-amidinopropane) dihydrochloride-induced free radical damage. More importantly, unlike quercetin and Trolox, the two TREN antioxidant dendrimers did not damage DNA via their pro-oxidant effects when incubated with physiological amounts of copper ions. The dendrimers also showed no cytotoxicity toward Chinese hamster ovary cells.


Asunto(s)
Antioxidantes/farmacología , Dendrímeros , Especies Reactivas de Oxígeno/farmacología , Animales , Células CHO , Cricetinae , Cricetulus , ADN/efectos de los fármacos , Electroforesis en Gel de Agar , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...