Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; : 101523, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38670098

RESUMEN

Peritoneal metastases (PMs) from colorectal cancer (CRC) respond poorly to treatment and are associated with unfavorable prognosis. For example, the addition of hyperthermic intraperitoneal chemotherapy (HIPEC) to cytoreductive surgery in resectable patients shows limited benefit, and novel treatments are urgently needed. The majority of CRC-PMs represent the CMS4 molecular subtype of CRC, and here we queried the vulnerabilities of this subtype in pharmacogenomic databases to identify novel therapies. This reveals the copper ionophore elesclomol (ES) as highly effective against CRC-PMs. ES exhibits rapid cytotoxicity against CMS4 cells by targeting mitochondria. We find that a markedly reduced mitochondrial content in CMS4 cells explains their vulnerability to ES. ES demonstrates efficacy in preclinical models of PMs, including CRC-PMs and ovarian cancer organoids, mouse models, and a HIPEC rat model of PMs. The above proposes ES as a promising candidate for the local treatment of CRC-PMs, with broader implications for other PM-prone cancers.

2.
Int J Hyperthermia ; 40(1): 2218627, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455017

RESUMEN

INTRODUCTION: Hyperthermic IntraPEritoneal Chemotherapy (HIPEC) aims to treat microscopic disease left after CytoReductive Surgery (CRS). Thermal enhancement depends on the temperatures achieved. Since the location of microscopic disease is unknown, a homogeneous treatment is required to completely eradicate the disease while limiting side effects. To ensure homogeneous delivery, treatment planning software has been developed. This study compares simulation results with clinical data and evaluates the impact of nine treatment strategies on thermal and drug distributions. METHODS: For comparison with clinical data, three treatment strategies were simulated with different flow rates (1600-1800mL/min) and inflow temperatures (41.6-43.6 °C). Six additional treatment strategies were simulated, varying the number of inflow catheters, flow direction, and using step-up and step-down heating strategies. Thermal homogeneity and the risk of thermal injury were evaluated. RESULTS: Simulated temperature distributions, core body temperatures, and systemic chemotherapeutic concentrations compared well with literature values. Treatment strategy was found to have a strong influence on the distributions. Additional inflow catheters could improve thermal distributions, provided flow rates are kept sufficiently high (>500 mL/min) for each catheter. High flow rates (1800 mL/min) combined with high inflow temperatures (43.6 °C) could lead to thermal damage, with CEM4310 values of up to 27 min. Step-up and step-down heating strategies allow for high temperatures with reduced risk of thermal damage. CONCLUSION: The planning software provides valuable insight into the effects of different treatment strategies on peritoneal distributions. These strategies are designed to provide homogeneous treatment delivery while limiting thermal injury to normal tissue, thereby optimizing the effectiveness of HIPEC.


Asunto(s)
Hipertermia Inducida , Neoplasias Peritoneales , Humanos , Quimioterapia Intraperitoneal Hipertérmica , Terapia Combinada , Hipertermia Inducida/métodos , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Peritoneales/cirugía , Quimioterapia del Cáncer por Perfusión Regional/métodos , Procedimientos Quirúrgicos de Citorreducción/métodos
3.
Front Oncol ; 13: 1122755, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007077

RESUMEN

Introduction: In patients with limited peritoneal metastasis (PM) originating from colorectal cancer, cytoreductive surgery (CRS) followed by hyperthermic intraperitoneal chemotherapy (HIPEC) is a potentially curative treatment option. This combined treatment modality using HIPEC with mitomycin C (MMC) for 90 minutes proved to be superior to systemic chemotherapy alone, but no benefit of adding HIPEC to CRS alone was shown using oxaliplatin-based HIPEC during 30 minutes. We investigated the impact of treatment temperature and duration as relevant HIPEC parameters for these two chemotherapeutic agents in representative preclinical models. The temperature- and duration- dependent efficacy for both oxaliplatin and MMC was evaluated in an in vitro setting and in a representative animal model. Methods: In 130 WAG/Rij rats, PM were established through i.p. injections of rat CC-531 colon carcinoma cells with a signature similar to the dominant treatment-resistant CMS4 type human colorectal PM. Tumor growth was monitored twice per week using ultrasound, and HIPEC was applied when most tumors were 4-6 mm. A semi-open four-inflow HIPEC setup was used to circulate oxaliplatin or MMC through the peritoneum for 30, 60 or 90 minutes with inflow temperatures of 38°C or 42°C to achieve temperatures in the peritoneum of 37°C or 41°C. Tumors, healthy tissue and blood were collected directly or 48 hours after treatment to assess the platinum uptake, level of apoptosis and proliferation and to determine the healthy tissue toxicity. Results: In vitro results show a temperature- and duration- dependent efficacy for both oxaliplatin and MMC in both CC-531 cells and organoids. Temperature distribution throughout the peritoneum of the rats was stable with normothermic and hyperthermic average temperatures in the peritoneum ranging from 36.95-37.63°C and 40.51-41.37°C, respectively. Treatments resulted in minimal body weight decrease (<10%) and only 7/130 rats did not reach the endpoint of 48 hours after treatment. Conclusions: Both elevated temperatures and longer treatment duration resulted in a higher platinum uptake, significantly increased apoptosis and lower proliferation in PM tumor lesions, without enhanced normal tissue toxicity. Our results demonstrated that oxaliplatin- and MMC-based HIPEC procedures are both temperature- and duration-dependent in an in vivo tumor model.

4.
Front Oncol ; 13: 1102242, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865797

RESUMEN

Introduction: CytoReductive Surgery (CRS) followed by Hyperthermic IntraPeritoneal Chemotherapy (HIPEC) is an often used strategy in treating patients diagnosed with peritoneal metastasis (PM) originating from various origins such as gastric, colorectal and ovarian. During HIPEC treatments, a heated chemotherapeutic solution is circulated through the abdomen using several inflow and outflow catheters. Due to the complex geometry and large peritoneal volume, thermal heterogeneities can occur resulting in an unequal treatment of the peritoneal surface. This can increase the risk of recurrent disease after treatment. The OpenFoam-based treatment planning software that we developed can help understand and map these heterogeneities. Methods: In this study, we validated the thermal module of the treatment planning software with an anatomically correct 3D-printed phantom of a female peritoneum. This phantom is used in an experimental HIPEC setup in which we varied catheter positions, flow rate and inflow temperatures. In total, we considered 7 different cases. We measured the thermal distribution in 9 different regions with a total of 63 measurement points. The duration of the experiment was 30 minutes, with measurement intervals of 5 seconds. Results: Experimental data were compared to simulated thermal distributions to determine the accuracy of the software. The thermal distribution per region compared well with the simulated temperature ranges. For all cases, the absolute error was well below 0.5°C near steady-state situations and around 0.5°C, for the entire duration of the experiment. Discussion: Considering clinical data, an accuracy below 0.5°C is adequate to provide estimates of variations in local treatment temperatures and to help optimize HIPEC treatments.

5.
Biomedicines ; 10(7)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35884917

RESUMEN

BACKGROUND: The peritoneum is a common site for the formation of metastases originating from several gastrointestinal and gynecological malignancies. A representative preclinical model to thoroughly explore the pathophysiological mechanisms and to study new treatment strategies is important. A major challenge for such models is defining and quantifying the (total) tumor burden in the peritoneal cavity prior to treatment, since it is preferable to use non-invasive methods. We evaluated ultrasound as a simple and easy-to-handle imaging method for this purpose. METHODS: Peritoneal metastases were established in six WAG/Rij rats through i.p. injections of the colon carcinoma cell line CC-531. Using ultrasound, the location, number and size of intraperitoneal tumor nodules were determined by two independent observers. Tumor outgrowth was followed using ultrasound until the peritoneal cancer index (PCI) was ≥8. Interobserver variability and ex vivo correlation were assessed. RESULTS: Visible peritoneal tumor nodules were formed in six WAG/Rij rats within 2-4 weeks after cell injection. In most animals, tumor nodules reached a size of 4-6 mm within 3-4 weeks, with total PCI scores ranging from 10-20. The predicted PCI scores using ultrasound ranged from 11-19 and from 8-18, for observer 1 and 2, respectively, which was quite similar to the ex vivo scores. CONCLUSIONS: Ultrasound is a reliable non-invasive method to detect intraperitoneal tumor nodules and quantify tumor outgrowth in a rat model.

6.
Cancers (Basel) ; 13(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34298644

RESUMEN

Hyperthermic intraperitoneal chemotherapy (HIPEC) is a treatment modality for patients with peritoneal metastasis (PM) of various origins which aims for cure in combination with cytoreductive surgery (CRS). Efficacy of CRS-HIPEC depends on patient selection, tumor type, delivery technique, and treatment parameters such as temperature, carrier solution, type of drug, dosage, volume, and treatment duration. Preclinical research offers a powerful tool to investigate the impact of these parameters and to assist in designing potentially more effective treatment protocols and clinical trials. The different methodologies for peritoneal disease and HIPEC are variable. This study aims to review the objectives, methods, and clinical relevance of in vivo preclinical HIPEC studies found in the literature. In this review, recommendations are provided and possible pitfalls are discussed on the choice of type of animal and tumor model per stratified parameters and study goal. The guidelines presented in this paper can improve the clinical relevance and impact of future in vivo HIPEC experiments.

7.
Int J Hyperthermia ; 38(1): 38-54, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33487083

RESUMEN

BACKGROUND: Hyperthermic intraperitoneal chemotherapy (HIPEC) is administered to treat residual microscopic disease after cytoreductive surgery (CRS). During HIPEC, fluid (41-43 °C) is administered and drained through a limited number of catheters, risking thermal and drug heterogeneities within the abdominal cavity that might reduce effectiveness. Treatment planning software provides a unique tool for optimizing treatment delivery. This study aimed to investigate the influence of treatment-specific parameters on the thermal and drug homogeneity in the peritoneal cavity in a computed tomography based rat model. METHOD: We developed computational fluid dynamics (CFD) software simulating the dynamic flow, temperature and drug distribution during oxaliplatin based HIPEC. The influence of location and number of catheters, flow alternations and flow rates on peritoneal temperature and drug distribution were determined. The software was validated using data from experimental rat HIPEC studies. RESULTS: The predicted core temperature and systemic oxaliplatin concentration were comparable to the values found in literature. Adequate placement of catheters, additional inflow catheters and higher flow rates reduced intraperitoneal temperature spatial variation by -1.4 °C, -2.3 °C and -1.2 °C, respectively. Flow alternations resulted in higher temperatures (up to +1.5 °C) over the peritoneal surface. Higher flow rates also reduced the spatial variation of chemotherapy concentration over the peritoneal surface resulting in a more homogeneous effective treatment dose. CONCLUSION: The presented treatment planning software provides unique insights in the dynamics during HIPEC, which enables optimization of treatment-specific parameters and provides an excellent basis for HIPEC treatment planning in human applications.


Asunto(s)
Hipertermia Inducida , Quimioterapia Intraperitoneal Hipertérmica , Animales , Terapia Combinada , Procedimientos Quirúrgicos de Citorreducción , Oxaliplatino , Peritoneo , Ratas , Programas Informáticos
8.
Drug Deliv ; 28(1): 145-161, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33427507

RESUMEN

Hyperthermic intraperitoneal chemotherapy (HIPEC) is administered to treat residual microscopic disease after debulking cytoreductive surgery. During HIPEC, a limited number of catheters are used to administer and drain fluid containing chemotherapy (41-43 °C), yielding heterogeneities in the peritoneum. Large heterogeneities may lead to undertreated areas, increasing the risk of recurrences. Aiming at intra-abdominal homogeneity is therefore essential to fully exploit the potential of HIPEC. More insight is needed into the extent of the heterogeneities during treatments and assess their effects on the efficacy of HIPEC. To that end we developed a computational model containing embedded tumor nodules in an environment mimicking peritoneal conditions. Tumor- and treatment-specific parameters affecting drug delivery like tumor size, tumor shape, velocity, temperature and dose were assessed using three-dimensional computational fluid dynamics (CFD) to demonstrate their effect on the drug distribution and accumulation in nodules. Clonogenic assays performed on RKO colorectal cell lines yielded the temperature-dependent IC50 values of cisplatin (19.5-6.8 micromolar for 37-43 °C), used to compare drug distributions in our computational models. Our models underlined that large nodules are more difficult to treat and that temperature and velocity are the most important factors to control the drug delivery. Moderate flow velocities, between 0.01 and 1 m/s, are optimal for the delivery of cisplatin. Furthermore, higher temperatures and higher doses increased the effective penetration depth with 69% and 54%, respectively. We plan to extend the software developed for this study toward patient-specific treatment planning software, capable of mapping and assist in reducing heterogeneous flow patterns.


Asunto(s)
Antineoplásicos/administración & dosificación , Cisplatino/administración & dosificación , Neoplasias Colorrectales/tratamiento farmacológico , Hidrodinámica , Quimioterapia Intraperitoneal Hipertérmica/métodos , Neoplasias Peritoneales/tratamiento farmacológico , Temperatura , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Simulación por Computador , Humanos , Concentración 50 Inhibidora , Neoplasias Peritoneales/secundario , Carga Tumoral
9.
Cancers (Basel) ; 12(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33255921

RESUMEN

BACKGROUND: Hyperthermic intraperitoneal chemotherapy (HIPEC) after cytoreductive surgery (CRS) is used for treating peritoneal metastases of various origins. Present HIPEC protocols have rarely been validated for relevant parameters such as optimal agent, duration and perfusate temperature. In vitro experiments are not completely representative of clinical circumstances. Therefore, a good preclinical in vivo HIPEC model is needed in which temperature distributions can be well-controlled and are stable throughout treatments. METHODS: We designed a setup able to generate and maintain a homogeneous flow during a 90-min HIPEC procedure using our in-house developed treatment planning tools and computer aided design (CAD) techniques. Twelve rats were treated with heated phosphate-buffered saline (PBS) using two catheter setups (one vs. four- inflows) and extensive thermometry. Simulated and measured thermal distribution and core temperatures were evaluated for the different setups. RESULTS: Overall, the four-inflow resulted in more stable and more homogeneous thermal distributions than the one-inflow, with lower standard deviations (0.79 °C vs. 1.41 °C at the outflow, respectively) and less thermal losses. The average thermal loss was 0.4 °C lower for rats treated with the four-inflow setup. Rat core temperatures were kept stable using occasional tail cooling, and rarely exceeded 39 °C. CONCLUSION: Increasing the number of inflow catheters from one to four resulted in increased flow and temperature homogeneity and stability. Tail cooling is an adequate technique to prevent rats from overheating during 90-min treatments. This validated design can improve accuracy in future in vivo experiments investigating the impact of relevant parameters on the efficacy of different HIPEC protocols.

10.
Cells ; 9(8)2020 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722384

RESUMEN

Cytoreductive surgery (CRS) followed by hyperthermic intraperitoneal chemotherapy (HIPEC) is a treatment with curative intent for peritoneal metastasis of colorectal cancer (CRC). Currently, there is no standardized HIPEC protocol: choice of drug, perfusate temperature, and duration of treatment vary per institute. We investigated the temperature-dependent effectiveness of drugs often used in HIPEC. METHODS: The effect of temperature on drug uptake, DNA damage, apoptosis, cell cycle distribution, and cell growth were assessed using the temperature-dependent IC50 and Thermal Enhancement Ratio (TER) values of the chemotherapeutic drugs cisplatin, oxaliplatin, carboplatin, mitomycin-C (MMC), and 5-fluorouracil (5-FU) on 2D and 3D CRC cell cultures at clinically relevant hyperthermic conditions (38-43 °C/60 min). RESULTS: Hyperthermia alone decreased cell viability and clonogenicity of all cell lines. Treatment with platinum-based drugs and MMC resulted in G2-arrest. Platinum-based drugs display a temperature-dependent synergy with heat, with increased drug uptake, DNA damage, and apoptosis at elevated temperatures. Apoptotic levels increased after treatment with MMC or 5-FU, without a synergy with heat. CONCLUSION: Our in vitro results demonstrate that a 60-min exposure of platinum-based drugs and MMC are effective in treating 2D and 3D CRC cell cultures, where platinum-based drugs require hyperthermia (>41 °C) to augment effectivity, suggesting that they are, in principle, suitable for HIPEC.


Asunto(s)
Antibióticos Antineoplásicos/uso terapéutico , Antimetabolitos Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/cirugía , Procedimientos Quirúrgicos de Citorreducción/métodos , Fluorouracilo/uso terapéutico , Hipertermia Inducida/métodos , Quimioterapia Intraperitoneal Hipertérmica/métodos , Mitomicina/uso terapéutico , Antibióticos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Fluorouracilo/farmacología , Humanos , Mitomicina/farmacología
11.
Int J Hyperthermia ; 37(1): 76-88, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31969039

RESUMEN

Introduction: Intravenous chemotherapy plus abdominal locoregional hyperthermia is explored as a noninvasive alternative to hyperthermic intraperitoneal chemotherapy (HIPEC) in treatment of peritoneal carcinomatosis (PC). First clinical results demonstrate feasibility, but survival data show mixed results and for pancreatic and gastric origin results are not better than expected for chemotherapy alone. In this study, computer simulations are performed to compare the effectiveness of peritoneal heating for five different locoregional heating systems.Methods: Simulations of peritoneal heating were performed for a phantom and two pancreatic cancer patients, using the Thermotron RF8, the AMC-4/ALBA-4D system, the BSD Sigma-60 and Sigma-Eye system, and the AMC-8 system. Specific absorption rate (SAR) distributions were optimized and evaluated. Next, to provide an indication of possible enhancement factors, the corresponding temperature distributions and thermal enhancement ratio (TER) of oxaliplatin were estimated.Results: Both phantom and patient simulations showed a relatively poor SAR coverage for the Thermotron RF8, a fairly good coverage for the AMC-4/ALBA-4D, Sigma-60, and Sigma-Eye systems, and the best and most homogeneous coverage for the AMC-8 system. In at least 50% of the peritoneum, 35-45 W/kg was predicted. Thermal simulations confirmed these favorable peritoneal heating properties of the AMC-8 system and TER values of ∼1.4-1.5 were predicted in at least 50% of the peritoneum.Conclusion: Locoregional peritoneal heating with the AMC-8 system yields more favorable heating patterns compared to other clinically used locoregional heating devices. Therefore, results of this study may promote the use of the AMC-8 system for locoregional hyperthermia in future multidisciplinary studies for treatment of PC.


Asunto(s)
Terapia Combinada/métodos , Hipertermia Inducida/métodos , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Peritoneales/terapia , Femenino , Humanos , Masculino
12.
Cancers (Basel) ; 11(1)2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30641919

RESUMEN

Peritoneal metastasis (PM) originating from gastrointestinal and gynecological malignancies are associated with a poor prognosis and rapid disease progression. Cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) is an effective treatment option with curative intent. Hyperthermia enhances the cytotoxicity of chemotherapeutic drugs, thereby killing microscopic tumors and reducing the risk of tumor recurrence. Eight parameters potentially have an impact on the efficacy of HIPEC: the type of drug, drug concentrations, carrier solution, volume of the perfusate, temperature of the perfusate, duration of the treatment, the technique of delivery, and patient selection. In this review, a literature search was performed on PubMed, and a total of 564 articles were screened of which 168 articles were included. Although HIPEC is a successful treatment, there is no standardized method for delivering HIPEC: the choice of parameters is presently largely determined by institutional preferences. We discuss the current choice of the parameters and hypothesize about improvements toward uniform standardization. Quantifying the effect of each parameter separately is necessary to determine the optimal way to perform HIPEC procedures. In vivo, in vitro, in silico, and other experimental studies should shed light on the role of each of the eight parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...