Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
A A Pract ; 18(9): e01844, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39248364

RESUMEN

Chiropractic spinal manipulation therapy (CSMT) of the cervical spine has been reported to cause mechanical dural injuries that result in cerebrospinal fluid (CSF) leaks. We present a case of symptomatic intracranial hypotension after isolated thoracic CSMT. Initial imaging was unable to definitively localize the CSF leak, but dynamic imaging was able to better identify the defect. Multiple epidural blood patches were attempted, including image-guided approaches and with fibrin sealant, but surgical repair was ultimately required. Our case illustrates the risk of dural tear in the setting of recent CSMT and the challenges of managing such an injury.


Asunto(s)
Pérdida de Líquido Cefalorraquídeo , Hipotensión Intracraneal , Manipulación Quiropráctica , Vértebras Torácicas , Humanos , Pérdida de Líquido Cefalorraquídeo/etiología , Pérdida de Líquido Cefalorraquídeo/terapia , Vértebras Torácicas/lesiones , Manipulación Quiropráctica/efectos adversos , Hipotensión Intracraneal/etiología , Hipotensión Intracraneal/terapia , Femenino , Masculino , Parche de Sangre Epidural , Persona de Mediana Edad
2.
J Am Heart Assoc ; 9(19): e017789, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33006292

RESUMEN

Background Atrial fibrillation (AF) driver mechanisms are obscured to clinical multielectrode mapping approaches that provide partial, surface-only visualization of unstable 3-dimensional atrial conduction. We hypothesized that transient modulation of refractoriness by pharmacologic challenge during multielectrode mapping improves visualization of hidden paths of reentrant AF drivers for targeted ablation. Methods and Results Pharmacologic challenge with adenosine was tested in ex vivo human hearts with a history of AF and cardiac diseases by multielectrode and high-resolution subsurface near-infrared optical mapping, integrated with 3-dimensional structural imaging and heart-specific computational simulations. Adenosine challenge was also studied on acutely terminated AF drivers in 10 patients with persistent AF. Ex vivo, adenosine stabilized reentrant driver paths within arrhythmogenic fibrotic hubs and improved visualization of reentrant paths, previously seen as focal or unstable breakthrough activation pattern, for targeted AF ablation. Computational simulations suggested that shortening of atrial refractoriness by adenosine may (1) improve driver stability by annihilating spatially unstable functional blocks and tightening reentrant circuits around fibrotic substrates, thus unmasking the common reentrant path; and (2) destabilize already stable reentrant drivers along fibrotic substrates by accelerating competing fibrillatory wavelets or secondary drivers. In patients with persistent AF, adenosine challenge unmasked hidden common reentry paths (9/15 AF drivers, 41±26% to 68±25% visualization), but worsened visualization of previously visible reentry paths (6/15, 74±14% to 34±12%). AF driver ablation led to acute termination of AF. Conclusions Our ex vivo to in vivo human translational study suggests that transiently altering atrial refractoriness can stabilize reentrant paths and unmask arrhythmogenic hubs to guide targeted AF driver ablation treatment.


Asunto(s)
Fibrilación Atrial/etiología , Corazón/fisiopatología , Adenosina/farmacología , Adulto , Fibrilación Atrial/patología , Fibrilación Atrial/fisiopatología , Femenino , Corazón/efectos de los fármacos , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Humanos , Imagenología Tridimensional , Masculino , Microelectrodos , Persona de Mediana Edad , Miocardio/patología , Imagen de Colorante Sensible al Voltaje
3.
Circ Arrhythm Electrophysiol ; 13(10): e008249, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32921129

RESUMEN

BACKGROUND: Atrial fibrillation (AF) can be maintained by localized intramural reentrant drivers. However, AF driver detection by clinical surface-only multielectrode mapping (MEM) has relied on subjective interpretation of activation maps. We hypothesized that application of machine learning to electrogram frequency spectra may accurately automate driver detection by MEM and add some objectivity to the interpretation of MEM findings. METHODS: Temporally and spatially stable single AF drivers were mapped simultaneously in explanted human atria (n=11) by subsurface near-infrared optical mapping (NIOM; 0.3 mm2 resolution) and 64-electrode MEM (higher density or lower density with 3 and 9 mm2 resolution, respectively). Unipolar MEM and NIOM recordings were processed by Fourier transform analysis into 28 407 total Fourier spectra. Thirty-five features for machine learning were extracted from each Fourier spectrum. RESULTS: Targeted driver ablation and NIOM activation maps efficiently defined the center and periphery of AF driver preferential tracks and provided validated annotations for driver versus nondriver electrodes in MEM arrays. Compared with analysis of single electrogram frequency features, averaging the features from each of the 8 neighboring electrodes, significantly improved classification of AF driver electrograms. The classification metrics increased when less strict annotation, including driver periphery electrodes, were added to driver center annotation. Notably, f1-score for the binary classification of higher-density catheter data set was significantly higher than that of lower-density catheter (0.81±0.02 versus 0.66±0.04, P<0.05). The trained algorithm correctly highlighted 86% of driver regions with higher density but only 80% with lower-density MEM arrays (81% for lower-density+higher-density arrays together). CONCLUSIONS: The machine learning model pretrained on Fourier spectrum features allows efficient classification of electrograms recordings as AF driver or nondriver compared with the NIOM gold-standard. Future application of NIOM-validated machine learning approach may improve the accuracy of AF driver detection for targeted ablation treatment in patients.


Asunto(s)
Potenciales de Acción , Fibrilación Atrial/diagnóstico , Técnicas Electrofisiológicas Cardíacas , Análisis de Fourier , Frecuencia Cardíaca , Aprendizaje Automático , Imagen de Colorante Sensible al Voltaje , Fibrilación Atrial/fisiopatología , Humanos , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Espectroscopía Infrarroja Corta , Factores de Tiempo
4.
Nat Commun ; 11(1): 512, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980605

RESUMEN

Mechanisms for human sinoatrial node (SAN) dysfunction are poorly understood and whether human SAN excitability requires voltage-gated sodium channels (Nav) remains controversial. Here, we report that neuronal (n)Nav blockade and selective nNav1.6 blockade during high-resolution optical mapping in explanted human hearts depress intranodal SAN conduction, which worsens during autonomic stimulation and overdrive suppression to conduction failure. Partial cardiac (c)Nav blockade further impairs automaticity and intranodal conduction, leading to beat-to-beat variability and reentry. Multiple nNav transcripts are higher in SAN vs atria; heterogeneous alterations of several isoforms, specifically nNav1.6, are associated with heart failure and chronic alcohol consumption. In silico simulations of Nav distributions suggest that INa is essential for SAN conduction, especially in fibrotic failing hearts. Our results reveal that not only cNav but nNav are also integral for preventing disease-induced failure in human SAN intranodal conduction. Disease-impaired nNav may underlie patient-specific SAN dysfunctions and should be considered to treat arrhythmias.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Neuronas/metabolismo , Nodo Sinoatrial/fisiopatología , Canales de Sodio/metabolismo , Potenciales de Acción/fisiología , Adulto , Anciano , Alcoholismo/genética , Arritmias Cardíacas/genética , Enfermedad Crónica , Simulación por Computador , Femenino , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Sistema de Conducción Cardíaco/metabolismo , Insuficiencia Cardíaca/genética , Humanos , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Imagen Óptica , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nodo Sinoatrial/metabolismo , Canales de Sodio/genética , Estrés Fisiológico , Adulto Joven
5.
JACC Clin Electrophysiol ; 4(12): 1501-1515, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30573112

RESUMEN

OBJECTIVES: This study sought to improve atrial fibrillation (AF) driver identification by integrating clinical multielectrode mapping with driver fingerprints defined by high-resolution ex vivo 3-dimensional (3D) functional and structural imaging. BACKGROUND: Clinical multielectrode mapping of AF drivers suffers from variable contact, signal processing, and structural complexity within the 3D human atrial wall, raising questions on the validity of such drivers. METHODS: Sustained AF was mapped in coronary-perfused explanted human hearts (n = 11) with transmural near-infrared optical mapping (∼0.3 mm2 resolution). Simultaneously, custom FIRMap catheters (∼9 × 9 mm2 resolution) mapped endocardial and epicardial surfaces, which were analyzed by Focal Impulse and Rotor Mapping activation and Rotational Activity Profile (Abbott Labs, Chicago, Illinois). Functional maps were integrated with contrast-enhanced cardiac magnetic resonance imaging (∼0.1 mm3 resolution) analysis of 3D fibrosis architecture. RESULTS: During sustained AF, near-infrared optical mapping identified 1 to 2 intramural, spatially stable re-entrant AF drivers per heart. Driver targeted ablation affecting 2.2 ± 1.1% of the atrial surface terminated and prevented AF. Driver regions had significantly higher phase singularity density and dominant frequency than neighboring nondriver regions. Focal Impulse and Rotor Mapping had 80% sensitivity to near-infrared optical mapping-defined driver locations (16 of 20), and matched 14 of 20 driver visualizations: 10 of 14 re-entries seen with Rotational Activity Profile; and 4 of 6 breakthrough/focal patterns. Focal Impulse and Rotor Mapping detected 1.1 ± 0.9 false-positive rotational activity profiles per recording, but these regions had lower intramural contrast-enhanced cardiac magnetic resonance imaging fibrosis than did driver regions (14.9 ± 7.9% vs. 23.2 ± 10.5%; p < 0.005). CONCLUSIONS: The study revealed that both re-entrant and breakthrough/focal AF driver patterns visualized by surface-only clinical multielectrodes can represent projections of 3D intramural microanatomic re-entries. Integration of multielectrode mapping and 3D fibrosis analysis may enhance AF driver detection, thereby improving the efficacy of driver-targeted ablation.


Asunto(s)
Fibrilación Atrial , Técnicas de Imagen Cardíaca/métodos , Técnicas Electrofisiológicas Cardíacas/métodos , Corazón , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/fisiopatología , Corazón/diagnóstico por imagen , Corazón/fisiopatología , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA