Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Neurol Neurosurg ; 206: 106637, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34022688

RESUMEN

Variants of the C19ORF12-gene have been described in patients with spastic paraplegia type 43 and in patients with mitochondrial membrane protein-associated neurodegeneration (MPAN), a subtype of neurodegeneration associated with brain iron accumulation (NBIA). In both subtypes optic atrophy and neuropathy have been frequently described. This case report describes a patient with bilateral optic atrophy and severe distal muscle weakness based on motor neuropathy without involvement of the central nervous system. Exome sequencing revealed a homozygous pathogenic missense variant (c.187G>C;p.Ala63Pro) of the C19ORF12-gene while iron deposits were absent on repeat MR-imaging of the brain, thus showing that peripheral neuropathy and optic neuropathy can be the sole manifestations of the C19ORF12-related disease spectrum whereby iron accumulation in the brain may be absent.


Asunto(s)
Proteínas Mitocondriales/genética , Debilidad Muscular/genética , Distrofias Neuroaxonales/genética , Distrofias Neuroaxonales/patología , Atrofias Ópticas Hereditarias/genética , Enfermedades del Sistema Nervioso Periférico/genética , Adulto , Humanos , Masculino , Mutación Missense
2.
Clin Genet ; 93(1): 111-118, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28671271

RESUMEN

Mitochondrial respiratory chain complex I consists of 44 different subunits and contains 3 functional modules: the Q-, the N- and the P-module. NDUFA9 is a Q-module subunit required for complex I assembly or stability. However, its role in complex I biogenesis has not been studied in patient fibroblasts. So far, a single patient carrying an NDUFA9 variant with a severe neonatally fatal phenotype has been reported. Via exome sequencing, we identified a novel homozygous NDUFA9 missense variant in another patient with a milder phenotype including childhood-onset progressive generalized dystonia and axonal peripheral neuropathy. We performed complex I assembly analysis using primary skin fibroblasts of both patients. Reduced complex I abundance and an accumulation of Q-module subassemblies were present in both patients but more pronounced in the severe clinical phenotype patient. The latter displayed additional accumulation of P-module subassemblies, which was not present in the milder-phenotype patient. Lentiviral complementation of both patient fibroblast cell lines with wild-type NDUFA9 rescued complex I deficiency and the assembly defects. Our report further characterizes the phenotypic spectrum of NDUFA9 deficiency and demonstrates that the severity of the clinical phenotype correlates with the severity of the effects of the different NDUFA9 variants on complex I assembly.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Proteínas Mitocondriales/genética , Mutación Puntual , Células Cultivadas , Complejo I de Transporte de Electrón/metabolismo , Resultado Fatal , Células HEK293 , Humanos , Recién Nacido , Masculino , Proteínas Mitocondriales/metabolismo , Secuenciación del Exoma/métodos
3.
Clin Genet ; 91(1): 121-125, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26951855

RESUMEN

The inherited optic neuropathies comprise a group of genetically heterogeneous disorders causing optic nerve dysfunction. In some cases, optic neuropathies are associated with cerebellar atrophy which mainly affects the vermis. Here, we describe a Moroccan girl of consanguineous parents with optic atrophy and cerebellar atrophy. Exome sequencing revealed a novel homozygous mutation (c.283+3G>T) in the donor splice site for exon 1 of SLC25A46. RNA analysis revealed that an alternative splice site within exon 1 was used leading to a premature termination codon within exon 2. SLC25A46 mRNA expression showed there is no wild-type transcript present in the patient and the mutant transcript does not undergo nonsense-mediated mRNA decay. Futhermore, we observed c.283+3G>T SLC25A46 mutation induces mitochondrial fragmentation. An additional 10 patients with optic atrophy and cerebellar atrophy, which were negative for mtDNA and OPA1 variants, were tested for pathogenic mutations in the SLC25A46 gene. However, no additional variants were identified. Our findings confirm the recent report of pathogenic SLC25A46 mutations as a novel cause for optic atrophy spectrum disorder.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Proteínas Mitocondriales/genética , Mutación , Atrofias Ópticas Hereditarias/genética , Proteínas de Transporte de Fosfato/genética , Sitios de Empalme de ARN/genética , Secuencia de Bases , Consanguinidad , Exoma/genética , Exones/genética , Salud de la Familia , Femenino , Humanos , Masculino , Padres , Linaje , Análisis de Secuencia de ADN/métodos
4.
Hum Reprod Update ; 18(4): 341-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22456975

RESUMEN

BACKGROUND: Mitochondrial disorders are often fatal multisystem disorders, partially caused by heteroplasmic mitochondrial DNA (mtDNA) point mutations. Prenatal diagnosis is generally not possible for these maternally inherited mutations because of extensive variation in mutation load among embryos and the inability to accurately predict the clinical expression. The aim of this study is to investigate if PGD could be a better alternative, by investigating the existence of a minimal mutation level below which the chance of an embryo being affected is acceptably low, irrespective of the mtDNA mutation. METHODS: We performed a systematic review of muscle mutation levels, evaluating 159 different heteroplasmic mtDNA point mutations derived from 327 unrelated patients or pedigrees, and reviewed three overrepresented mtDNA mutations (m.3243A>G, m.8344A>G and m.8993T>C/G) separately. RESULTS: Mutation levels were included for familial mtDNA point mutations only, covering all affected (n = 195) and unaffected maternal relatives (n = 19) from 137 pedigrees. Mean muscle mutation levels were comparable between probands and affected maternal relatives, and between affected individuals with tRNA- versus protein-coding mutations. Using an estimated a priori prevalence of being affected in pedigrees of 0.477, we calculated that a 95% or higher chance of being unaffected was associated with a muscle mutation level of 18% or less. At a mutation level of 18%, the predicted probability of being affected is 0.00744. The chance of being unaffected was lower only for the m.3243A>G mutation (P < 0.001). Most carriers of mtDNA mutations will have oocytes with mutation levels below this threshold. CONCLUSIONS: Our data show, for the first time, that carriers of heteroplasmic mtDNA mutations will have a fair chance of having healthy offspring, by applying PGD. Nevertheless, our conclusions are partly based on estimations and, as indicated, do not provide absolute certainty. Carriers of mtDNA should be informed about these constraints.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Diagnóstico Preimplantación/estadística & datos numéricos , Heterocigoto , Humanos , Músculo Esquelético , Linaje , Mutación Puntual , ARN de Transferencia/genética
5.
J Med Genet ; 49(1): 10-5, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22114105

RESUMEN

BACKGROUND: Mitochondrial disorders are associated with abnormalities of the oxidative phosphorylation (OXPHOS) system and cause significant morbidity and mortality in the population. The extensive clinical and genetic heterogeneity of these disorders due to a broad variety of mutations in several hundreds of candidate genes, encoded by either the mitochondrial DNA (mtDNA) or nuclear DNA (nDNA), impedes a straightforward genetic diagnosis. A new disease gene is presented here, identified in a single Kurdish patient born from consanguineous parents with neonatally fatal Leigh syndrome and complex I deficiency. METHODS AND RESULTS: Using homozygosity mapping and subsequent positional candidate gene analysis, a total region of 255.8 Mb containing 136 possible mitochondrial genes was identified. A pathogenic mutation was found in the complex I subunit encoding the NDUFA9 gene, changing a highly conserved arginine at position 321 to proline. This is the first disease-causing mutation ever reported for NDUFA9. Complex I activity was restored in fibroblasts of the patient by lentiviral transduction with wild type but not mutant NDUFA9, confirming that the mutation causes the complex I deficiency and related disease. CONCLUSIONS: The data show that homozygosity mapping and candidate gene analysis remain an efficient way to detect mutations even in small consanguineous pedigrees with OXPHOS deficiency, especially when the enzyme deficiency in fibroblasts allows appropriate candidate gene selection and functional complementation.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/genética , Mutación Missense , Secuencia de Aminoácidos , Células Cultivadas , Consanguinidad , Análisis Mutacional de ADN , Complejo I de Transporte de Electrón/metabolismo , Resultado Fatal , Estudios de Asociación Genética , Homocigoto , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Datos de Secuencia Molecular , Neuroimagen
6.
Mitochondrion ; 11(6): 964-72, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21946566

RESUMEN

The mitochondrial DNA (mtDNA) is highly variable, containing large numbers of pathogenic mutations and neutral polymorphisms. The spectrum of homoplasmic mtDNA variation was characterized in 730 subjects and compared with known pathogenic sites. The frequency and distribution of variants in protein coding genes were inversely correlated with conservation at the amino acid level. Analysis of tRNA secondary structures indicated a preference of variants for the loops and some acceptor stem positions. This comprehensive overview of mtDNA variants distinguishes between regions and positions which are likely not critical, mainly conserved regions with pathogenic mutations and essential regions containing no mutations at all.


Asunto(s)
Secuencia Conservada , ADN Mitocondrial/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , ADN Mitocondrial/química , Humanos , Lactante , Persona de Mediana Edad , Conformación de Ácido Nucleico , Polimorfismo Genético , ARN de Transferencia/genética , Análisis de Secuencia de ADN , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...