Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Circ Genom Precis Med ; 17(2): e004416, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38516780

RESUMEN

BACKGROUND: Preimplantation genetic testing (PGT) is a reproductive technology that selects embryos without (familial) genetic variants. PGT has been applied in inherited cardiac disease and is included in the latest American Heart Association/American College of Cardiology guidelines. However, guidelines selecting eligible couples who will have the strongest risk reduction most from PGT are lacking. We developed an objective decision model to select eligibility for PGT and compared its results with those from a multidisciplinary team. METHODS: All couples with an inherited cardiac disease referred to the national PGT center were included. A multidisciplinary team approved or rejected the indication based on clinical and genetic information. We developed a decision model based on published risk prediction models and literature, to evaluate the severity of the cardiac phenotype and the penetrance of the familial variant in referred patients. The outcomes of the model and the multidisciplinary team were compared in a blinded fashion. RESULTS: Eighty-three couples were referred for PGT (1997-2022), comprising 19 different genes for 8 different inherited cardiac diseases (cardiomyopathies and arrhythmias). Using our model and proposed cutoff values, a definitive decision was reached for 76 (92%) couples, aligning with 95% of the multidisciplinary team decisions. In a prospective cohort of 11 couples, we showed the clinical applicability of the model to select couples most eligible for PGT. CONCLUSIONS: The number of PGT requests for inherited cardiac diseases increases rapidly, without the availability of specific guidelines. We propose a 2-step decision model that helps select couples with the highest risk reduction for cardiac disease in their offspring after PGT.


Asunto(s)
Toma de Decisiones Clínicas , Enfermedades Genéticas Congénitas , Pruebas Genéticas , Cardiopatías , Diagnóstico Preimplantación , Derivación y Consulta , Femenino , Humanos , Pruebas Genéticas/métodos , Cardiopatías/congénito , Cardiopatías/diagnóstico , Cardiopatías/genética , Cardiopatías/prevención & control , Diagnóstico Preimplantación/métodos , Masculino , Toma de Decisiones Clínicas/métodos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética , Gestión de Riesgos , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/prevención & control , Heterocigoto , Estudios Prospectivos , Composición Familiar
2.
Genome Med ; 16(1): 32, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355605

RESUMEN

BACKGROUND: To diagnose the full spectrum of hereditary and congenital diseases, genetic laboratories use many different workflows, ranging from karyotyping to exome sequencing. A single generic high-throughput workflow would greatly increase efficiency. We assessed whether genome sequencing (GS) can replace these existing workflows aimed at germline genetic diagnosis for rare disease. METHODS: We performed short-read GS (NovaSeq™6000; 150 bp paired-end reads, 37 × mean coverage) on 1000 cases with 1271 known clinically relevant variants, identified across different workflows, representative of our tertiary diagnostic centers. Variants were categorized into small variants (single nucleotide variants and indels < 50 bp), large variants (copy number variants and short tandem repeats) and other variants (structural variants and aneuploidies). Variant calling format files were queried per variant, from which workflow-specific true positive rates (TPRs) for detection were determined. A TPR of ≥ 98% was considered the threshold for transition to GS. A GS-first scenario was generated for our laboratory, using diagnostic efficacy and predicted false negative as primary outcome measures. As input, we modeled the diagnostic path for all 24,570 individuals referred in 2022, combining the clinical referral, the transition of the underlying workflow(s) to GS, and the variant type(s) to be detected. RESULTS: Overall, 95% (1206/1271) of variants were detected. Detection rates differed per variant category: small variants in 96% (826/860), large variants in 93% (341/366), and other variants in 87% (39/45). TPRs varied between workflows (79-100%), with 7/10 being replaceable by GS. Models for our laboratory indicate that a GS-first strategy would be feasible for 84.9% of clinical referrals (750/883), translating to 71% of all individuals (17,444/24,570) receiving GS as their primary test. An estimated false negative rate of 0.3% could be expected. CONCLUSIONS: GS can capture clinically relevant germline variants in a 'GS-first strategy' for the majority of clinical indications in a genetics diagnostic lab.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades Raras , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación Completa del Genoma , Secuencia de Bases , Mapeo Cromosómico , Secuenciación del Exoma
3.
Nat Commun ; 14(1): 6845, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891200

RESUMEN

The short lengths of short-read sequencing reads challenge the analysis of paralogous genomic regions in exome and genome sequencing data. Most genetic variants within these homologous regions therefore remain unidentified in standard analyses. Here, we present a method (Chameleolyser) that accurately identifies single nucleotide variants and small insertions/deletions (SNVs/Indels), copy number variants and ectopic gene conversion events in duplicated genomic regions using whole-exome sequencing data. Application to a cohort of 41,755 exome samples yields 20,432 rare homozygous deletions and 2,529,791 rare SNVs/Indels, of which we show that 338,084 are due to gene conversion events. None of the SNVs/Indels are detectable using regular analysis techniques. Validation by high-fidelity long-read sequencing in 20 samples confirms >88% of called variants. Focusing on variation in known disease genes leads to a direct molecular diagnosis in 25 previously undiagnosed patients. Our method can readily be applied to existing exome data.


Asunto(s)
Exoma , Polimorfismo de Nucleótido Simple , Humanos , Exoma/genética , Mutación INDEL , Variaciones en el Número de Copia de ADN , Análisis de Sistemas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
4.
Neth Heart J ; 31(7-8): 315-323, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37505369

RESUMEN

BACKGROUND: The arrhythmogenic cardiomyopathy (ACM) phenotype, with life-threatening ventricular arrhythmias and heart failure, varies according to genetic aetiology. We aimed to characterise the phenotype associated with the variant c.1211dup (p.Val406Serfs*4) in the plakophilin­2 gene (PKP2) and compare it with previously reported Dutch PKP2 founder variants. METHODS: Clinical data were collected retrospectively from medical records of 106 PKP2 c.1211dup heterozygous carriers. Using data from the Netherlands ACM Registry, c.1211dup was compared with 3 other truncating PKP2 variants (c.235C > T (p.Arg79*), c.397C > T (p.Gln133*) and c.2489+1G > A (p.?)). RESULTS: Of the 106 carriers, 47 (44%) were diagnosed with ACM, at a mean age of 41 years. By the end of follow-up, 29 (27%) had experienced sustained ventricular arrhythmias and 12 (11%) had developed heart failure, with male carriers showing significantly higher risks than females on these endpoints (p < 0.05). Based on available cardiac magnetic resonance imaging and echocardiographic data, 46% of the carriers showed either right ventricular dilatation and/or dysfunction, whereas a substantial minority (37%) had some form of left ventricular involvement. Both geographical distribution of carriers and haplotype analysis suggested PKP2 c.1211dup to be a founder variant originating from the South-Western coast of the Netherlands. Finally, a Cox proportional hazards model suggested significant differences in ventricular arrhythmia-free survival between 4 PKP2 founder variants, including c.1211dup. CONCLUSIONS: The PKP2 c.1211dup variant is a Dutch founder variant associated with a typical right-dominant ACM phenotype, but also left ventricular involvement, and a possibly more severe phenotype than other Dutch PKP2 founder variants.

5.
Heart Rhythm ; 20(8): 1158-1166, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37164047

RESUMEN

BACKGROUND: Truncating variants in filamin C (FLNC) can cause arrhythmogenic cardiomyopathy (ACM) through haploinsufficiency. Noncanonical splice-altering variants may contribute to this phenotype. OBJECTIVE: The purpose of this study was to investigate the clinical and functional consequences of a recurrent FLNC intronic variant of uncertain significance (VUS), c.970-4A>G. METHODS: Clinical data in 9 variant heterozygotes from 4 kindreds were obtained from 5 tertiary health care centers. We used in silico predictors and functional studies with peripheral blood and patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Isolated RNA was studied by reverse transcription polymerase chain reaction. iPSC-CMs were further characterized at baseline and after nonsense-mediated decay (NMD) inhibition, using quantitative polymerase chain reaction (qPCR), RNA-sequencing, and cellular electrophysiology. American College of Medical Genetics and Genomics (ACMG) criteria were used to adjudicate variant pathogenicity. RESULTS: Variant heterozygotes displayed a spectrum of disease phenotypes, spanning from mild ventricular dysfunction with palpitations to severe ventricular arrhythmias requiring device shocks or progressive cardiomyopathy requiring heart transplantation. Consistent with in silico predictors, the c.970-4A>G FLNC variant activated a cryptic splice acceptor site, introducing a 3-bp insertion containing a premature termination codon. NMD inhibition upregulated aberrantly spliced transcripts by qPCR and RNA-sequencing. Patch clamp studies revealed irregular spontaneous action potentials, increased action potential duration, and increased sodium late current in proband-derived iPSC-CMs. These findings fulfilled multiple ACMG criteria for pathogenicity. CONCLUSION: Clinical, in silico, and functional evidence support the prediction that the intronic c.970-4A>G VUS disrupts splicing and drives ACM, enabling reclassification from VUS to pathogenic.


Asunto(s)
Cardiomiopatías , Humanos , Cardiomiopatías/genética , Codón sin Sentido , Filaminas/genética , Mutación , Miocitos Cardíacos , ARN/genética
6.
Ned Tijdschr Geneeskd ; 1672023 05 10.
Artículo en Holandés | MEDLINE | ID: mdl-37163412

RESUMEN

Mitochondrial diseases are the most common inborn errors of metabolism. These severe multisystem disorders cause serious morbidity and mortality. Generally no treatment is available. This underlines the importance of counseling about the reproductive options to prevent the transmission of mitochondrial disorders. The majority of mitochondrial disorders is caused by a defect in a nuclear gene, in which cases the standard reproductive options can be applied, such as prenatal diagnosis (PND) and preimplantation genetic testing (PGT). For mitochondrial disorders caused by a mitochondrial DNA (mtDNA) mutation, reproductive options are determined by the recurrence risk, requiring specific reproductive counseling. For de novomtDNA mutations and inherited mtDNA mutations with a low recurrence risk, PND is possible. In case of a moderate or higher recurrence risk, PGT is the best option. In case the risk of a healthy embryo is (very) low, mitochondrial replacement therapy (MRT) may be a possibility in the future.


Asunto(s)
Enfermedades Mitocondriales , Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Niño , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/prevención & control , Diagnóstico Prenatal , Pruebas Genéticas , ADN Mitocondrial/genética
7.
Eur J Hum Genet ; 31(7): 776-783, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37198425

RESUMEN

It was previously suggested that increasing the number of genes on diagnostic gene panels could increase the genetic yield in patient with dilated cardiomyopathy (DCM). We explored the diagnostic and prognostic relevance of testing DCM patients with an expanded gene panel. The current study included 225 consecutive DCM patients who had no genetic diagnosis after a 48-gene cardiomyopathy-panel. These were then evaluated using an expanded gene panel of 299 cardiac-associated genes. A likely pathogenic/pathogenic (P/LP) variant was detected in 13 patients. Five variants were reclassifications of variants found in genes which were already detected using the 48 gene panel. Only one of the other eight variants could explain the phenotype of the patient (KCNJ2). The panel detected 186 VUSs in 127 patients (of which 6 also had a P/LP variant). The presence of a VUS was significantly associated with the combined end-point of mortality, heart failure hospitalization, heart transplantation or life-threatening arrhythmias(HR, 2.04 [95% CI, 1.15 to 3.65]; p = 0.02). The association of a VUS with prognosis remained when we only included VUSs in robust DCM-associated genes (high suspicious VUSs), but disappeared when we only included VUSs in non-robust DCM-associated genes (low suspicious VUSs), highlighting the importance of weighing of VUSs. Overall, the use of large gene panels for genetic testing in DCM does not increase the diagnostic yield, although a VUS in a robust DCM-associated gene is associated with an adverse prognosis. Altogether, current diagnostic gene panels should be limited to the robust DCM-associated genes.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Humanos , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Pronóstico , Pruebas Genéticas , Cardiomiopatías/genética , Fenotipo
8.
Radiol Cardiothorac Imaging ; 5(2): e230014, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37124643

RESUMEN

Left ventricular hypertrophy (LVH) has a broad differential diagnosis. Pathogenic variants of mitochondrial DNA are a rare cause of LVH, and cardiac MRI is a powerful technique that may aid in differentiating such rare causes. This case report presents three siblings with a pathogenic variant of the mitochondrially encoded tRNA isoleucine (MT-TI) gene. A distinctive cardiac phenotype was detected with cardiac MRI. Extensive LVH and dilatation and decreased ejection fraction were observed with a pattern of increased T2 signal and extensive late gadolinium enhancement, which was remarkably consistent among all three siblings. Keywords: Cardiomyopathies, MR Imaging, Hypertrophic Cardiomyopathy, Mitochondrial, Inherited Cardiomyopathy, Left Ventricular Hypertrophy, Cardiovascular MRI, Late Gadolinium Enhancement Supplemental material is available for this article. © RSNA, 2023.

9.
Genet Med ; 25(7): 100838, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37057673

RESUMEN

PURPOSE: Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) regulates cell growth in response to nutritional status. Central to the mTORC1 function is the Rag-GTPase heterodimer. One component of the Rag heterodimer is RagC (Ras-related GTP-binding protein C), which is encoded by the RRAGC gene. METHODS: Genetic testing via trio exome sequencing was applied to identify the underlying disease cause in 3 infants with dilated cardiomyopathy, hepatopathy, and brain abnormalities, including pachygyria, polymicrogyria, and septo-optic dysplasia. Studies in patient-derived skin fibroblasts and in a HEK293 cell model were performed to investigate the cellular consequences. RESULTS: We identified 3 de novo missense variants in RRAGC (NM_022157.4: c.269C>A, p.(Thr90Asn), c.353C>T, p.(Pro118Leu), and c.343T>C, p.(Trp115Arg)), which were previously reported as occurring somatically in follicular lymphoma. Studies of patient-derived fibroblasts carrying the p.(Thr90Asn) variant revealed increased cell size, as well as dysregulation of mTOR-related p70S6K (ribosomal protein S6 kinase 1) and transcription factor EB signaling. Moreover, subcellular localization of mTOR was decoupled from metabolic state. We confirmed the key findings for all RRAGC variants described in this study in a HEK293 cell model. CONCLUSION: The above results are in line with a constitutive overactivation of the mTORC1 pathway. Our study establishes de novo missense variants in RRAGC as cause of an early-onset mTORopathy with unfavorable prognosis.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Unión al GTP Monoméricas , Serina-Treonina Quinasas TOR , Humanos , Lactante , Fibroblastos/metabolismo , Enfermedades Genéticas Congénitas/genética , Células HEK293 , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/genética , Mutación Missense , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
10.
Circ Genom Precis Med ; 16(2): e003788, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36971006

RESUMEN

BACKGROUND: Dilated cardiomyopathy (DCM) was considered a monogenetic disease that can be caused by over 60 genes. Evidence suggests that the combination of multiple pathogenic variants leads to greater disease severity and earlier onset. So far, not much is known about the prevalence and disease course of multiple pathogenic variants in patients with DCM. To gain insight into these knowledge gaps, we (1) systematically collected clinical information from a well-characterized DCM cohort and (2) created a mouse model. METHODS: Complete cardiac phenotyping and genotyping was performed in 685 patients with consecutive DCM. Compound heterozygous digenic (LMNA [lamin]/titin deletion A-band) with monogenic (LMNA/wild-type) and wild-type/wild-type mice were created and phenotypically followed over time. RESULTS: One hundred thirty-one likely pathogenic/pathogenic (LP/P) variants in robust DCM-associated genes were found in 685 patients with DCM (19.1%) genotyped for the robust genes. Three of the 131 patients had a second LP/P variant (2.3%). These 3 patients had a comparable disease onset, disease severity, and clinical course to patients with DCM with one LP/P. The LMNA/Titin deletion A-band mice had no functional differences compared with the LMNA/wild-type mice after 40 weeks of follow-up, although RNA-sequencing suggests increased cardiac stress and sarcomere insufficiency in the LMNA/Titin deletion A-band mice. CONCLUSIONS: In this study population, 2.3% of patients with DCM with one LP/P also have a second LP/P in a different gene. Although the second LP/P does not seem to influence the disease course of DCM in patients and mice, the finding of a second LP/P can be of importance to their relatives.


Asunto(s)
Cardiomiopatía Dilatada , Humanos , Animales , Ratones , Cardiomiopatía Dilatada/epidemiología , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Conectina/genética , Prevalencia , Mutación , Genotipo
11.
J Clin Invest ; 132(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35617047

RESUMEN

Mitochondrial DNA (mtDNA) depletion/deletions syndromes (MDDS) encompass a clinically and etiologically heterogenous group of mitochondrial disorders caused by impaired mtDNA maintenance. Among the most frequent causes of MDDS are defects in nucleoside/nucleotide metabolism, which is critical for synthesis and homeostasis of the deoxynucleoside triphosphate (dNTP) substrates of mtDNA replication. A central enzyme for generating dNTPs is ribonucleotide reductase, a critical mediator of de novo nucleotide synthesis composed of catalytic RRM1 subunits in complex with RRM2 or p53R2. Here, we report 5 probands from 4 families who presented with ptosis and ophthalmoplegia as well as other clinical manifestations and multiple mtDNA deletions in muscle. We identified 3 RRM1 loss-of-function variants, including a dominant catalytic site variant (NP_001024.1: p.N427K) and 2 homozygous recessive variants at p.R381, which has evolutionarily conserved interactions with the specificity site. Atomistic molecular dynamics simulations indicate mechanisms by which RRM1 variants affect protein structure. Cultured primary skin fibroblasts of probands manifested mtDNA depletion under cycling conditions, indicating impaired de novo nucleotide synthesis. Fibroblasts also exhibited aberrant nucleoside diphosphate and dNTP pools and mtDNA ribonucleotide incorporation. Our data reveal that primary RRM1 deficiency and, by extension, impaired de novo nucleotide synthesis are causes of MDDS.


Asunto(s)
Enfermedades Mitocondriales , Ribonucleótido Reductasas , Replicación del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Enfermedades Mitocondriales/genética , Nucleósidos , Nucleótidos/genética , Ribonucleósido Difosfato Reductasa/genética , Ribonucleósido Difosfato Reductasa/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo
12.
Acta Neuropathol ; 143(2): 245-262, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34918187

RESUMEN

Nucleotide metabolism is a complex pathway regulating crucial cellular processes such as nucleic acid synthesis, DNA repair and proliferation. This study shows that impairment of the biosynthesis of one of the building blocks of DNA, dTTP, causes a severe, early-onset neurodegenerative disease. Here, we describe two unrelated children with bi-allelic variants in DTYMK, encoding dTMPK, which catalyzes the penultimate step in dTTP biosynthesis. The affected children show severe microcephaly and growth retardation with minimal neurodevelopment. Brain imaging revealed severe cerebral atrophy and disappearance of the basal ganglia. In cells of affected individuals, dTMPK enzyme activity was minimal, along with impaired DNA replication. In addition, we generated dtymk mutant zebrafish that replicate this phenotype of microcephaly, neuronal cell death and early lethality. An increase of ribonucleotide incorporation in the genome as well as impaired responses to DNA damage were observed in dtymk mutant zebrafish, providing novel pathophysiological insights. It is highly remarkable that this deficiency is viable as an essential component for DNA cannot be generated, since the metabolic pathway for dTTP synthesis is completely blocked. In summary, by combining genetic and biochemical approaches in multiple models we identified loss-of-function of DTYMK as the cause of a severe postnatal neurodegenerative disease and highlight the essential nature of dTTP synthesis in the maintenance of genome stability and neuronal survival.


Asunto(s)
Enfermedades Neurodegenerativas/genética , Nucleósido-Fosfato Quinasa/genética , Animales , Femenino , Humanos , Masculino , Microcefalia/genética , Mutación , Pez Cebra
13.
Neuromuscul Disord ; 31(9): 859-864, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34419324

RESUMEN

Whole exome sequencing (WES), analyzed with GENESIS and WeGET, revealed a homozygous deletion in the C1QBP gene in a patient with progressive external ophthalmoplegia (PEO) and multiple mtDNA deletions. The gene encodes the mitochondria-located complementary 1 Q subcomponent-binding protein, involved in mitochondrial homeostasis. Biallelic mutations in C1QBP cause mitochondrial cardiomyopathy and/or PEO with variable age of onset. Our patient showed only late-onset PEO-plus syndrome without overt cardiac involvement. Available data suggest that early-onset cardiomyopathy variants localize in important structural domains and PEO-plus variants in the coiled-coil region. Our patient demonstrates that C1QBP mutations should be considered in individuals with PEO with or without cardiomyopathy.


Asunto(s)
Proteínas Portadoras/genética , Secuenciación del Exoma , Proteínas Mitocondriales/genética , Oftalmoplejía Externa Progresiva Crónica/genética , Adulto , ADN Mitocondrial/genética , Femenino , Homocigoto , Humanos , Mitocondrias/genética , Mutación , Eliminación de Secuencia
14.
Eur J Hum Genet ; 29(12): 1789-1795, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34426662

RESUMEN

In a Dutch non-consanguineous patient having mitochondrial encephalomyopathy with complex I and complex IV deficiency, whole exome sequencing revealed two compound heterozygous variants in SLIRP. SLIRP gene encodes a stem-loop RNA-binding protein that regulates mitochondrial RNA expression and oxidative phosphorylation (OXPHOS). A frameshift and a deep-intronic splicing variant reduced the amount of functional wild-type SLIRP RNA to 5%. Consequently, in patient fibroblasts, MT-ND1, MT-ND6, and MT-CO1 expression was reduced. Lentiviral transduction of wild-type SLIRP cDNA in patient fibroblasts increased MT-ND1, MT-ND6, and MT-CO1 expression (2.5-7.2-fold), whereas mutant cDNAs did not. A fourfold decrease of citrate synthase versus total protein ratio in patient fibroblasts indicated that the resulting reduced mitochondrial mass caused the OXPHOS deficiency. Transduction with wild-type SLIRP cDNA led to a 2.4-fold increase of this ratio and partly restored OXPHOS activity. This confirmed causality of the SLIRP variants. In conclusion, we report SLIRP variants as a novel cause of mitochondrial encephalomyopathy with OXPHOS deficiency.


Asunto(s)
Encefalomiopatías Mitocondriales/genética , Proteínas de Unión al ARN/genética , Células Cultivadas , Niño , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Fibroblastos/metabolismo , Genes Recesivos , Humanos , Masculino , Encefalomiopatías Mitocondriales/patología , Mutación , Proteínas de Unión al ARN/metabolismo
15.
Genet Med ; 23(11): 2186-2193, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34194005

RESUMEN

PURPOSE: Accurate interpretation of variants detected in dilated cardiomyopathy (DCM) is crucial for patient care but has proven challenging. We applied a set of proposed refined American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria for DCM, reclassified all detected variants in robust genes, and associated these results to patients' phenotype. METHODS: The study included 902 DCM probands from the Maastricht Cardiomyopathy Registry who underwent genetic testing. Two gene panel sizes (extended n = 48; and robust panel n = 14) and two standards of variant classification (standard versus the proposed refined ACMG/AMP criteria) were applied to compare genetic yield. RESULTS: A pathogenic or likely pathogenic (P/LP) variant was found in 17.8% of patients, and a variant of uncertain significance (VUS) was found in 32.8% of patients when using method 1 (extended panel (n = 48) + standard ACMG/AMP), compared to respectively 16.9% and 12.9% when using method 2 (robust panel (n = 14) + standard ACMG/AMP), and respectively 14% and 14.5% using method 3 (robust panel (n = 14) + refined ACMG/AMP). Patients with P/LP variants had significantly lower event-free survival compared to genotype-negative DCM patients. CONCLUSION: Stringent gene selection for DCM genetic testing reduced the number of VUS while retaining ability to detect similar P/LP variants. The number of genes on diagnostic panels should be limited to genes that have the highest signal to noise ratio.


Asunto(s)
Cardiomiopatía Dilatada , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Pruebas Genéticas , Variación Genética , Genómica , Humanos , Fenotipo
16.
J Clin Invest ; 131(6)2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33497358

RESUMEN

Hirschsprung disease (HSCR) is the most frequent developmental anomaly of the enteric nervous system, with an incidence of 1 in 5000 live births. Chronic intestinal pseudo-obstruction (CIPO) is less frequent and classified as neurogenic or myogenic. Isolated HSCR has an oligogenic inheritance with RET as the major disease-causing gene, while CIPO is genetically heterogeneous, caused by mutations in smooth muscle-specific genes. Here, we describe a series of patients with developmental disorders including gastrointestinal dysmotility, and investigate the underlying molecular bases. Trio-exome sequencing led to the identification of biallelic variants in ERBB3 and ERBB2 in 8 individuals variably associating HSCR, CIPO, peripheral neuropathy, and arthrogryposis. Thorough gut histology revealed aganglionosis, hypoganglionosis, and intestinal smooth muscle abnormalities. The cell type-specific ErbB3 and ErbB2 function was further analyzed in mouse single-cell RNA sequencing data and in a conditional ErbB3-deficient mouse model, revealing a primary role for ERBB3 in enteric progenitors. The consequences of the identified variants were evaluated using quantitative real-time PCR (RT-qPCR) on patient-derived fibroblasts or immunoblot assays on Neuro-2a cells overexpressing WT or mutant proteins, revealing either decreased expression or altered phosphorylation of the mutant receptors. Our results demonstrate that dysregulation of ERBB3 or ERBB2 leads to a broad spectrum of developmental anomalies, including intestinal dysmotility.


Asunto(s)
Discapacidades del Desarrollo/genética , Seudoobstrucción Intestinal/genética , Mutación , Neurregulina-1/genética , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Adolescente , Animales , Preescolar , Discapacidades del Desarrollo/patología , Modelos Animales de Enfermedad , Femenino , Motilidad Gastrointestinal/genética , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/patología , Humanos , Recién Nacido , Seudoobstrucción Intestinal/patología , Masculino , Ratones , Modelos Moleculares , Linaje , Fenotipo , Embarazo , Receptor ErbB-2/química , Receptor ErbB-3/química , Receptor ErbB-3/deficiencia
17.
Mol Genet Genomic Med ; 9(2): e1595, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33432785

RESUMEN

BACKGROUND: Isobutyryl-CoA dehydrogenase (IBD) is a mitochondrial enzyme catalysing the third step in the degradation of the essential branched-chain amino acid valine and is encoded by ACAD8. ACAD8 mutations lead to isobutyryl-CoA dehydrogenase deficiency (IBDD), which is identified by increased C4-acylcarnitine levels. Affected individuals are either asymptomatic or display a variety of symptoms during infancy, including speech delay, cognitive impairment, failure to thrive, hypotonia, and emesis. METHODS: Here, we review all previously published IBDD patients and describe a girl diagnosed with IBDD who was presenting with autism as the main disease feature. RESULTS: To assess whether a phenotype-genotype correlation exists that could explain the development or absence of clinical symptoms in IBDD, we compared CADD scores, in silico mutation predictions, LoF tolerance scores and C4-acylcarnitine levels between symptomatic and asymptomatic individuals. Statistical analysis of these parameters did not establish significant differences amongst both groups. CONCLUSION: As in our proband, trio whole exome sequencing did not establish an alternative secondary genetic diagnosis for autism, and reported long-term follow-up of IBDD patients is limited, it is possible that autism spectrum disorders could be one of the disease-associated features. Further long-term follow-up is suggested in order to delineate the full clinical spectrum associated with IBDD.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/genética , Trastorno Autístico/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Fenotipo , Acil-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/patología , Trastorno Autístico/patología , Niño , Femenino , Humanos , Mutación , Secuenciación del Exoma
18.
Eur J Med Genet ; 64(1): 104120, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33278652

RESUMEN

Complex I deficiency is the most common pediatric mitochondrial disease. It can cause a wide range of clinical disorders, including Leigh syndrome. TIMMDC1 encodes an assembly protein of complex I and has been recently associated with early onset mitochondrial disease in three unrelated families. In all three families the same homozygous deep intronic variant was identified leading to inclusion of a new exon resulting in a frameshift and premature stop codon (c.596 + 2146A > G, p.Gly199_Thr200ins5*). Herein, we describe two brothers of Dutch descent, presenting in infancy with hypotonia and respiratory insufficiency and a rapidly progressive and fatal disease course. Laboratory findings and metabolic investigations revealed no specific abnormalities, notably no raised plasma lactate. MRI showed transient lesions in the basal ganglia of brother 1. A muscle biopsy demonstrated complex I deficiency in brother 2. Exome sequencing yielded a novel heterozygous TIMMDC1 variant: c.385C > T, p.(Arg129*). Targeted sequencing revealed the previously published deep intronic variant c.596 + 2146A > G, p.(Gly199_Thr200ins5*) on the second allele which is not detected by exome sequencing. In summary, we present the fourth family with TIMMDC1-related disease, with a novel nonsense variant. This report illustrates the importance of considering mitochondrial disease even when laboratory findings are normal, and the added value of targeted sequencing of introns.


Asunto(s)
Enfermedades Mitocondriales/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Fenotipo , Ganglios Basales/diagnóstico por imagen , Codón sin Sentido , Diagnóstico Tardío , Heterocigoto , Humanos , Lactante , Intrones , Ácido Láctico/sangre , Masculino , Enfermedades Mitocondriales/diagnóstico , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Linaje
19.
Eur J Hum Genet ; 28(7): 956-962, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32203199

RESUMEN

Myotonic dystrophy type 1 (DM1) is caused by a CTG trinucleotide repeat expansion on chromosome 19q13.3. While DM1 premutation (36-50 repeats) and protomutation (51-80 repeats) allele carriers are mostly asymptomatic, offspring is at risk of inheriting expanded, symptom-associated, (CTG)n repeats of n > 80. In this study we aimed to evaluate the intergenerational instability of DM1 pre- and protomutation alleles, focussing on the influence of parental gender. One hundred and forty-six parent-child pairs (34 parental premutations, 112 protomutations) were retrospectively selected from the DM1 patient cohort of the Maastricht University Medical Center+. CTG repeat size of parents and children was determined by (triplet-primed) PCR followed by fragment length analysis and Southern blot analysis. Fifty-eight out of eighty-one (71.6%) paternal transmissions led to a (CTG)n repeat of n > 80 in offspring, compared with 15 out of 65 (23.1%) maternal transmissions (p < 0.001). Repeat length instability occurred for paternal (CTG)n repeats of n ≥ 45, while maternal instability did not occur until (CTG)n repeats reached a length of n ≥ 71. Transmission of premutations caused (CTG)n repeats of n > 80 in offspring only when paternally transmitted (two cases), while protomutations caused (CTG)n repeats of n > 80 in offspring in 71 cases, of which 56 (78.9%) were paternally transmitted. In conclusion, our data show that paternally transmitted pre- and protomutations were more unstable than maternally transmitted pre- and protomutations. For genetic counseling, this implies that males with a small DMPK mutation have a higher risk of symptomatic offspring compared with females. Consequently, we suggest addressing sex-dependent factors in genetic counseling of small-sized CTG repeat carriers.


Asunto(s)
Distrofia Miotónica/genética , Herencia Paterna , Expansión de Repetición de Trinucleótido , Adulto , Niño , Cromosomas Humanos Par 19/genética , Femenino , Humanos , Masculino , Distrofia Miotónica/patología
20.
Hum Mutat ; 41(6): 1091-1111, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32112656

RESUMEN

Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high-throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC-associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrimental for muscle function, as found in HCM and MFM. Variants associated with HCM are predominantly missense variants, which cluster in the ROD2 domain. This domain is important for binding to the sarcomere and to ensure appropriate cell signaling. We here review FLNC genotype-phenotype correlations based on available evidence.


Asunto(s)
Cardiomiopatías/genética , Filaminas/genética , Enfermedades Musculares/genética , Animales , Arritmias Cardíacas/genética , Cardiomiopatía Dilatada/genética , Modelos Animales de Enfermedad , Estudios de Asociación Genética , Humanos , Mutación , Miopatías Estructurales Congénitas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...