Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 923281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783378

RESUMEN

Oomycete and fungal pathogens cause billions of dollars of damage to crops worldwide annually. Therefore, there remains a need for broad-spectrum resistance genes, especially ones that target pathogens but do not interfere with colonization by beneficial microbes. Motivated by evidence suggesting that phosphatidylinositol-3-phosphate (PI3P) may be involved in the delivery of some oomycete and fungal virulence effector proteins, we created stable transgenic soybean plants that express and secrete two different PI3P-binding proteins, GmPH1 and VAM7, in an effort to interfere with effector delivery and confer resistance. Soybean plants expressing the two PI3P-binding proteins exhibited reduced infection by the oomycete pathogen Phytophthora sojae compared to control lines. Measurements of nodulation by nitrogen-fixing mutualistic bacterium Bradyrhizobium japonicum, which does not produce PI3P, revealed that the two lines with the highest levels of GmPH1 transcripts exhibited reductions in nodulation and in benefits from nodulation. Transcriptome and plant hormone measurements were made of soybean lines with the highest transcript levels of GmPH1 and VAM7, as well as controls, following P. sojae- or mock-inoculation. The results revealed increased levels of infection-associated transcripts in the transgenic lines, compared to controls, even prior to P. sojae infection, suggesting that the plants were primed for increased defense. The lines with reduced nodulation exhibited elevated levels of jasmonate-isoleucine and of transcripts of a JAR1 ortholog encoding jasmonate-isoleucine synthetase. However, lines expressing VAM7 transgenes exhibited normal nodulation and no increases in jasmonate-isoleucine. Overall, together with previously published data from cacao and from P. sojae transformants, the data suggest that secretion of PI3P-binding proteins may confer disease resistance through a variety of mechanisms.

2.
J Evol Biol ; 35(6): 844-854, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35506571

RESUMEN

In mutualisms, variation at genes determining partner fitness provides the raw material upon which coevolutionary selection acts, setting the dynamics and pace of coevolution. However, we know little about variation in the effects of genes that underlie symbiotic fitness in natural mutualist populations. In some species of legumes that form root nodule symbioses with nitrogen-fixing rhizobial bacteria, hosts secrete nodule-specific cysteine-rich (NCR) peptides that cause rhizobia to differentiate in the nodule environment. However, rhizobia can cleave NCR peptides through the expression of genes like the plasmid-borne Host range restriction peptidase (hrrP), whose product degrades specific NCR peptides. Although hrrP activity can confer host exploitation by depressing host fitness and enhancing symbiont fitness, the effects of hrrP on symbiosis phenotypes depend strongly on the genotypes of the interacting partners. However, the effects of hrrP have yet to be characterised in a natural population context, so its contribution to variation in wild mutualist populations is unknown. To understand the distribution of effects of hrrP in wild rhizobia, we measured mutualism phenotypes conferred by hrrP in 12 wild Ensifer medicae strains. To evaluate context dependency of hrrP effects, we compared hrrP effects across two Medicago polymorpha host genotypes and across two experimental years for five E. medicae strains. We show for the first time in a natural population context that hrrP has a wide distribution of effect sizes for many mutualism traits, ranging from strongly positive to strongly negative. Furthermore, we show that hrrP effect size varies across host genotypes and experiment years, suggesting that researchers should be cautious about extrapolating the role of genes in natural populations from controlled laboratory studies of single genetic variants.


Asunto(s)
Fabaceae , Rhizobium , Fabaceae/genética , Fabaceae/microbiología , Negociación , Péptidos , Rhizobium/genética , Simbiosis/genética , Verduras
3.
Mol Ecol ; 27(23): 4758-4774, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30325569

RESUMEN

To establish and spread in a new location, an invasive species must be able to carry out its life cycle in novel environmental conditions. A key trait underlying fitness is the shift from vegetative to reproductive growth through floral development. In this study, we used a common garden experiment and genotyping-by-sequencing to test whether the latitudinal flowering cline of the North American invasive plant Medicago polymorpha was translocated from its European native range through multiple introductions, or whether the cline rapidly established due to evolution following a genetic bottleneck. Analysis of flowering time in 736 common garden plants showed a latitudinal flowering time cline in both the native and invaded ranges where genotypes from lower latitudes flowered earlier. Genotyping-by-sequencing of 9,658 SNPs in 446 individuals revealed two major subpopulations of M. polymorpha in the native range, only one of which is present in the invaded range. Additionally, native range populations have higher genetic diversity than invaded range populations, suggesting that a genetic bottleneck occurred during invasion. All invaded range individuals are closely related to plants collected from native range populations in Portugal and southern Spain, and population assignment tests assigned invaded range individuals to this same narrow source region. Taken together, our results suggest that latitudinal clinal variation in flowering time has rapidly evolved across the invaded range despite a genetic bottleneck following introduction.


Asunto(s)
Flores/fisiología , Genética de Población , Especies Introducidas , Medicago/genética , Genotipo , Medicago/fisiología , América del Norte , Polimorfismo de Nucleótido Simple
4.
Mol Plant Microbe Interact ; 29(11): 831-843, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27671120

RESUMEN

Recent studies have suggested that ethylene enhances host resistance to fungal pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Among the six 1-aminocyclopropane-1-carboxylic acid synthase genes in rice, OsACS1 and OsACS2 are induced within 24 h of inoculation by M. oryzae. This induction occurs simultaneously with an increase in ethylene production that is noticeable 12 h postinoculation. The purpose of this study was to examine the dynamics of ethylene production and signaling in wild type and RNA interference-mediated suppression lines deficient in ethylene production (acs2) or signaling (eil1) after challenge with M. oryzae as well as fungal cell-wall elicitors. Ethylene-insensitive mutant lines show an attenuated basal defense response including lower basal expression of the genes encoding a chitin-binding receptor, pathogenesis-related (PR) proteins, and the enzymes involved in the synthesis of diterprenoid phytoalexins, a reduction on early hypersensitive response (HR)-like cell death, and reduced incidence of callose deposition. Ethylene-deficient mutants showed an intermediate phenotype, with a significant reduction in expression of defense-related genes and callose deposition, but only a slight reduction in HR-like cell death. As a result, all ethylene-insensitive mutants show increased susceptibility to M. oryzae, whereas the ethylene-deficient lines show a slight but less significant increase in disease severity. These results show that ethylene signaling and, to some extent, ethylene production are required for rice basal resistance against the blast fungus Magnaporthe oryzae.


Asunto(s)
Etilenos/biosíntesis , Magnaporthe/fisiología , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/biosíntesis , Transducción de Señal , Etilenos/análisis , Mutación , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/análisis , Inmunidad de la Planta , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología
5.
Plant Methods ; 12: 19, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26973706

RESUMEN

BACKGROUND: Theobroma cacao L., the source of cocoa, is a crop of significant economic value around the world. To facilitate the study of gene function in cacao we have developed a rapid Agrobacterium-mediated transient genetic transformation protocol. Here we present a detailed methodology for our transformation assay, as well as an assay for inoculation of cacao leaves with pathogens. RESULTS: Agrobacterium tumefaciens cultures are induced then vacuum-infiltrated into cacao leaves. Transformation success can be gauged 48 h after infiltration by observation of green fluorescent protein and by qRT-PCR. We clarify the characteristics of cacao leaf stages and demonstrate that our strategy efficiently transforms leaves of developmental stage C. The transformation protocol has high efficacy in stage C leaves of four of eight tested genotypes. We also present the functional analysis of cacao chitinase overexpression using the transient transformation system, which resulted in decreased pathogen biomass and lesion size after infection with Phytophthora tropicalis. CONCLUSIONS: Leaves expressing transgenes of interest can be used in subsequent functional genetic assays such as pathogen bioassay, metabolic analysis, gene expression analysis etc. This transformation protocol can be carried out in 1 day, and the transgenes expressing leaf tissue can be maintained in petri dishes for 5-7 days, allowing sufficient time for performance of additional downstream gene functional analysis. Application of these methods greatly increases the rapidity with which candidate genes with roles in defense can be tested.

6.
Plant Biotechnol J ; 14(3): 875-86, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26214158

RESUMEN

The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P-binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P-binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P-binding site, or by a secreted PI4P-binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P-binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P-binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens.


Asunto(s)
Cacao/microbiología , Colletotrichum/fisiología , Resistencia a la Enfermedad , Proteínas de Unión a Fosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Phytophthora/fisiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Cacao/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas de Unión a Fosfato/química , Phytophthora/patogenicidad , Hojas de la Planta/microbiología , Proteínas de Plantas/química , Plantas Modificadas Genéticamente , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Transformación Genética
7.
Plant Biotechnol J ; 11(1): 33-42, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23031077

RESUMEN

Rice blast (Magnaporthe oryzae) and sheath blight (Rhizoctonia solani) are the two most devastating diseases of rice (Oryza sativa), and have severe impacts on crop yield and grain quality. Recent evidence suggests that ethylene (ET) may play a more prominent role than salicylic acid and jasmonic acid in mediating rice disease resistance. In this study, we attempt to genetically manipulate endogenous ET levels in rice for enhancing resistance to rice blast and sheath blight diseases. Transgenic lines with inducible production of ET were generated by expressing the rice ACS2 (1-aminocyclopropane-1-carboxylic acid synthase, a key enzyme of ET biosynthesis) transgene under control of a strong pathogen-inducible promoter. In comparison with the wild-type plant, the OsACS2-overexpression lines showed significantly increased levels of the OsACS2 transcripts, endogenous ET and defence gene expression, especially in response to pathogen infection. More importantly, the transgenic lines exhibited increased resistance to a field isolate of R. solani, as well as different races of M. oryzae. Assessment of the growth rate, generational time and seed production revealed little or no differences between wild type and transgenic lines. These results suggest that pathogen-inducible production of ET in transgenic rice can enhance resistance to necrotrophic and hemibiotrophic fungal pathogens without negatively impacting crop productivity.


Asunto(s)
Resistencia a la Enfermedad/genética , Etilenos/biosíntesis , Magnaporthe/patogenicidad , Oryza/inmunología , Oryza/microbiología , Rhizoctonia/patogenicidad , Regulación de la Expresión Génica de las Plantas , Ingeniería Genética , Variación Genética , Genotipo , Oryza/genética , Oryza/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/metabolismo , Transgenes
8.
Methods Mol Biol ; 956: 285-309, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23135860

RESUMEN

Rice diseases such as blast (Magnaporthe oryzae), sheath blight (Rhizoctonia solani) and bacterial blight (Xanthomonas oryzae pv oryzae) are a major obstacle to achieving optimal yields. To complement conventional breeding method, molecular and transgenic method represents an increasingly important approach for genetic improvement of disease resistance and reduction of pesticide usage. During the past two decades, a wide variety of genes and mechanisms involved in rice defense response have been identified and elucidated. These include components of pathogen recognition, signal transduction, downstream defense-related proteins, and crosstalk among different signaling pathways. In addition, various molecular strategies including use of specialized promoters, modification of target protein structures have been studied and proposed to improve the effectiveness of transgenes. While genetically improving rice for enhanced disease resistance, it is important to consider potential effects of the transgene on rice yield, tolerance to abiotic stresses, and defense against other pathogens.


Asunto(s)
Oryza/genética , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Interacción Gen-Ambiente , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Oryza/inmunología , Oryza/metabolismo , Enfermedades de las Plantas/inmunología , Plantas Modificadas Genéticamente , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...