Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 382(6671): 702-707, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37943916

RESUMEN

Wildfire risks to homes are increasing, especially in the wildland-urban interface (WUI), where wildland vegetation and houses are in close proximity. Notably, we found that more houses are exposed to and destroyed by grassland and shrubland fires than by forest fires in the United States. Destruction was more likely in forest fires, but they burned less WUI. The number of houses within wildfire perimeters has doubled since the 1990s because of both housing growth (47% of additionally exposed houses) and more burned area (53%). Most exposed houses were in the WUI, which grew substantially during the 2010s (2.6 million new WUI houses), albeit not as rapidly as before. Any WUI growth increases wildfire risk to houses though, and more fires increase the risk to existing WUI houses.


Asunto(s)
Entorno Construido , Bosques , Pradera , Incendios Forestales , Entorno Construido/estadística & datos numéricos , Estados Unidos
2.
Nature ; 621(7977): 94-99, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37468636

RESUMEN

The wildland-urban interface (WUI) is where buildings and wildland vegetation meet or intermingle1,2. It is where human-environmental conflicts and risks can be concentrated, including the loss of houses and lives to wildfire, habitat loss and fragmentation and the spread of zoonotic diseases3. However, a global analysis of the WUI has been lacking. Here, we present a global map of the 2020 WUI at 10 m resolution using a globally consistent and validated approach based on remote sensing-derived datasets of building area4 and wildland vegetation5. We show that the WUI is a global phenomenon, identify many previously undocumented WUI hotspots and highlight the wide range of population density, land cover types and biomass levels in different parts of the global WUI. The WUI covers only 4.7% of the land surface but is home to nearly half its population (3.5 billion). The WUI is especially widespread in Europe (15% of the land area) and the temperate broadleaf and mixed forests biome (18%). Of all people living near 2003-2020 wildfires (0.4 billion), two thirds have their home in the WUI, most of them in Africa (150 million). Given that wildfire activity is predicted to increase because of climate change in many regions6, there is a need to understand housing growth and vegetation patterns as drivers of WUI change.


Asunto(s)
Biomasa , Ciudades , Mapeo Geográfico , Densidad de Población , Vida Silvestre , Humanos , Bosques , Incendios Forestales/prevención & control , Incendios Forestales/estadística & datos numéricos , Urbanización , Ciudades/estadística & datos numéricos , África , Europa (Continente) , Vivienda/provisión & distribución , Vivienda/tendencias , Cambio Climático
3.
Ecol Appl ; 32(6): e2624, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35404493

RESUMEN

Human activities alter ecosystems everywhere, causing rapid biodiversity loss and biotic homogenization. These losses necessitate coordinated conservation actions guided by biodiversity and species distribution spatial data that cover large areas yet have fine-enough resolution to be management-relevant (i.e., ≤5 km). However, most biodiversity products are too coarse for management or are only available for small areas. Furthermore, many maps generated for biodiversity assessment and conservation do not explicitly quantify the inherent tradeoff between resolution and accuracy when predicting biodiversity patterns. Our goals were to generate predictive models of overall breeding bird species richness and species richness of different guilds based on nine functional or life-history-based traits across the conterminous United States at three resolutions (0.5, 2.5, and 5 km) and quantify the tradeoff between resolution and accuracy and, hence, relevance for management of the resulting biodiversity maps. We summarized 18 years of North American Breeding Bird Survey data (1992-2019) and modeled species richness using random forests, including 66 predictor variables (describing climate, vegetation, geomorphology, and anthropogenic conditions), 20 of which we newly derived. Among the three spatial resolutions, the percentage variance explained ranged from 27% to 60% (median = 54%; mean = 57%) for overall species richness and 12% to 87% (median = 61%; mean = 58%) for our different guilds. Overall species richness and guild-specific species richness were best explained at 5-km resolution using ~24 predictor variables based on percentage variance explained, symmetric mean absolute percentage error, and root mean square error values. However, our 2.5-km-resolution maps were almost as accurate and provided more spatially detailed information, which is why we recommend them for most management applications. Our results represent the first consistent, occurrence-based, and nationwide maps of breeding bird richness with a thorough accuracy assessment that are also spatially detailed enough to inform local management decisions. More broadly, our findings highlight the importance of explicitly considering tradeoffs between resolution and accuracy to create management-relevant biodiversity products for large areas.


Asunto(s)
Aves , Ecosistema , Animales , Biodiversidad , Actividades Humanas , Humanos , Estados Unidos
4.
Ecol Appl ; 32(5): e2597, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35340097

RESUMEN

The wildland-urban interface (WUI) is the focus of many important land management issues, such as wildfire, habitat fragmentation, invasive species, and human-wildlife conflicts. Wildfire is an especially critical issue, because housing growth in the WUI increases wildfire ignitions and the number of homes at risk. Identifying the WUI is important for assessing and mitigating impacts of development on wildlands and for protecting homes from natural hazards, but data on housing development for large areas are often coarse. We created new WUI maps for the conterminous United States based on 125 million individual building locations, offering higher spatial precision compared to existing maps based on U.S. census housing data. Building point locations were based on a building footprint data set from Microsoft. We classified WUI across the conterminous United States at 30-m resolution using a circular neighborhood mapping algorithm with a variable radius to determine thresholds of housing density and vegetation cover. We used our maps to (1) determine the total area of the WUI and number of buildings included, (2) assess the sensitivity of WUI area included and spatial pattern of WUI maps to choice of neighborhood size, (3) assess regional differences between building-based WUI maps and census-based WUI maps, and (4) determine how building location accuracy affected WUI map accuracy. Our building-based WUI maps identified 5.6%-18.8% of the conterminous United States as being in the WUI, with larger neighborhoods increasing WUI area but excluding isolated building clusters. Building-based maps identified more WUI area relative to census-based maps for all but the smallest neighborhoods, particularly in the north-central states, and large differences were attributable to high numbers of non-housing structures in rural areas. Overall WUI classification accuracy was 98.0%. For wildfire risk mapping and for general purposes, WUI maps based on the 500-m neighborhood represent the original Federal Register definition of the WUI; these maps include clusters of buildings in and adjacent to wildlands and exclude remote, isolated buildings. Our approach for mapping the WUI offers flexibility and high spatial detail and can be widely applied to take advantage of the growing availability of high-resolution building footprint data sets and classification methods.


Asunto(s)
Incendios , Incendios Forestales , Conservación de los Recursos Naturales/métodos , Ecosistema , Vivienda , Humanos , Estados Unidos
5.
Proc Natl Acad Sci U S A ; 115(13): 3314-3319, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29531054

RESUMEN

The wildland-urban interface (WUI) is the area where houses and wildland vegetation meet or intermingle, and where wildfire problems are most pronounced. Here we report that the WUI in the United States grew rapidly from 1990 to 2010 in terms of both number of new houses (from 30.8 to 43.4 million; 41% growth) and land area (from 581,000 to 770,000 km2; 33% growth), making it the fastest-growing land use type in the conterminous United States. The vast majority of new WUI areas were the result of new housing (97%), not related to an increase in wildland vegetation. Within the perimeter of recent wildfires (1990-2015), there were 286,000 houses in 2010, compared with 177,000 in 1990. Furthermore, WUI growth often results in more wildfire ignitions, putting more lives and houses at risk. Wildfire problems will not abate if recent housing growth trends continue.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Vivienda , Urbanización , Incendios Forestales/estadística & datos numéricos , Humanos , Factores de Riesgo , Estados Unidos
6.
Ecol Appl ; 26(8): 2706-2717, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27907265

RESUMEN

Coastal areas provide nesting habitat for marine turtles that is critical for the persistence of their populations. However, many coastal areas are highly affected by coastal development, which affects the reproductive success of marine turtles. Knowing the extent to which nesting areas are exposed to these threats is essential to guide management initiatives. This information is particularly important for coastal areas with both high nesting density and dense human development, a combination that is common in the United States. We assessed the extent to which nesting areas of the loggerhead (Caretta caretta), the green (Chelonia mydas), the Kemp's ridley (Lepidochelys kempii), and leatherback turtles (Dermochelys coriacea) in the continental United States are exposed to coastal development and identified conservation hotspots that currently have high reproductive importance and either face high exposure to coastal development (needing intervention), or have low exposure to coastal development, and are good candidates for continued and future protection. Night-time light, housing, and population density were used as proxies for coastal development and human disturbance. About 81.6% of nesting areas were exposed to housing and human population, and 97.8% were exposed to light pollution. Further, most (>65%) of the very high- and high-density nesting areas for each species/subpopulation, except for the Kemp's ridley, were exposed to coastal development. Forty-nine nesting sites were selected as conservation hotspots; of those high-density nesting sites, 49% were sites with no/low exposure to coastal development and the other 51% were exposed to high-density coastal development. Conservation strategies need to account for ~66.8% of all marine turtle nesting areas being on private land and for nesting sites being exposed to large numbers of seasonal residents.


Asunto(s)
Comportamiento de Nidificación , Tortugas , Animales , Ecosistema , Predicción , Actividades Humanas , Humanos , Densidad de Población , Reproducción , Estados Unidos
7.
Ecol Appl ; 26(4): 1018-29, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27509745

RESUMEN

One challenge in the effort to conserve biodiversity is identifying where to prioritize resources for active land management. Cost-benefit analyses have been used successfully as a conservation tool to identify sites that provide the greatest conservation benefit per unit cost. Our goal was to apply cost-benefit analysis to the question of how to prioritize land management efforts, in our case the application of prescribed fire to natural landscapes in Wisconsin, USA. We quantified and mapped frequently burned communities and prioritized management units based on a suite of indices that captured ecological benefits, management effort, and the feasibility of successful long-term management actions. Data for these indices came from LANDFIRE, Wisconsin's Wildlife Action Plan, and a nationwide wildland-urban interface assessment. We found that the majority of frequently burned vegetation types occurred in the southern portion of the state. However, the highest priority areas for applying prescribed fire occurred in the central, northwest, and northeast portion of the state where frequently burned vegetation patches were larger and where identified areas of high biological importance area occurred. Although our focus was on the use of prescribed fire in Wisconsin, our methods can be adapted to prioritize other land management activities. Such prioritization is necessary to achieve the greatest possible benefits from limited funding for land management actions, and our results show that it is feasible at scales that are relevant for land management decisions.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Incendios , Monitoreo del Ambiente , Modelos Biológicos , Programas Informáticos , Wisconsin
8.
Ecol Appl ; 25(1): 160-71, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26255365

RESUMEN

Land-use change is a major cause of wildlife habitat loss. Understanding how changes in land-use policies and economic factors can impact future trends in land use and wildlife habitat loss is therefore critical for conservation efforts. Our goal here was to evaluate the consequences of future land-use changes under different conservation policies and crop market conditions on habitat loss for wildlife species in the southeastern United States. We predicted the rates of habitat loss for 336 terrestrial vertebrate species by 2051. We focused on habitat loss due to the expansion of urban, crop, and pasture. Future land-use changes following business-as-usual conditions resulted in relatively low rates of wildlife habitat loss across the entire Southeast, but some ecoregions and species groups experienced much higher habitat loss than others. Increased crop commodity prices exacerbated wildlife habitat loss in most ecoregions, while the implementation of conservation policies (reduced urban sprawl, and payments for land conservation) reduced the projected habitat loss in some regions, to a certain degree. Overall, urban and crop expansion were the main drivers of habitat loss. Reptiles and wildlife species associated with open vegetation (grasslands, open woodlands) were the species groups most vulnerable to future land-use change. Effective conservation of wildlife habitat in the Southeast should give special consideration to future land-use changes, regional variations, and the forces that could shape land-use decisions.


Asunto(s)
Animales Salvajes , Ecosistema , Vertebrados/fisiología , Agroquímicos , Animales , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Actividades Humanas , Modelos Teóricos , Sudeste de Estados Unidos , Factores de Tiempo , Urbanización
9.
Proc Natl Acad Sci U S A ; 111(20): 7492-7, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24799685

RESUMEN

Providing food, timber, energy, housing, and other goods and services, while maintaining ecosystem functions and biodiversity that underpin their sustainable supply, is one of the great challenges of our time. Understanding the drivers of land-use change and how policies can alter land-use change will be critical to meeting this challenge. Here we project land-use change in the contiguous United States to 2051 under two plausible baseline trajectories of economic conditions to illustrate how differences in underlying market forces can have large impacts on land-use with cascading effects on ecosystem services and wildlife habitat. We project a large increase in croplands (28.2 million ha) under a scenario with high crop demand mirroring conditions starting in 2007, compared with a loss of cropland (11.2 million ha) mirroring conditions in the 1990s. Projected land-use changes result in increases in carbon storage, timber production, food production from increased yields, and >10% decreases in habitat for 25% of modeled species. We also analyze policy alternatives designed to encourage forest cover and natural landscapes and reduce urban expansion. Although these policy scenarios modify baseline land-use patterns, they do not reverse powerful underlying trends. Policy interventions need to be aggressive to significantly alter underlying land-use change trends and shift the trajectory of ecosystem service provision.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Agricultura/métodos , Anfibios , Animales , Biodiversidad , Aves , Carbono/química , Conservación de los Recursos Naturales/economía , Abastecimiento de Alimentos , Geografía , Modelos Econométricos , Política Pública , Árboles , Estados Unidos
10.
Ecol Appl ; 24(6): 1445-62, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-29160666

RESUMEN

Protected areas are a cornerstone for biodiversity conservation, but they also provide amenities that attract housing development on inholdings and adjacent private lands. We explored how this development affects biodiversity within and near protected areas among six ecological regions throughout the United States. We quantified the effect of housing density within, at the boundary, and outside protected areas, and natural land cover within protected areas, on the proportional abundance and proportional richness of three avian guilds within protected areas. We developed three guilds from the North American Breeding Bird Survey, which included Species of Greatest Conservation Need, land cover affiliates (e.g., forest breeders), and synanthropic species associated with urban environments. We gathered housing density data for the year 2000 from the U.S. Census Bureau, and centered the bird data on this year. We obtained land cover data from the 2001 National Land Cover Database, and we used single- and multiple-variable analyses to address our research question. In all regions, housing density within protected areas was positively associated with the proportional abundance or proportional richness of synanthropes, and negatively associated with the proportional abundance or proportional richness of Species of Greatest Conservation Need. These relationships were strongest in the eastern forested regions and the central grasslands, where more than 70% and 45%, respectively, of the variation in the proportional abundance of synanthropes and Species of Greatest Conservation Need were explained by housing within protected areas. Furthermore, in most regions, housing density outside protected areas was positively associated with the proportional abundance or proportional richness of synanthropes and negatively associated with the proportional abundance of land cover affiliates and Species of Greatest Conservation Need within protected areas. However, these effects were weaker than housing within protected areas. Natural land cover was high with little variability within protected areas, and consequently, was less influential than housing density within or outside protected areas explaining the proportional abundance or proportional richness of the avian guilds. Our results indicate that housing development within, at the boundary, and outside protected areas impacts avian community structure within protected areas throughout the United States.


Asunto(s)
Biodiversidad , Aves , Conservación de los Recursos Naturales , Vivienda , Animales , Actividades Humanas , Densidad de Población , Estados Unidos
11.
Proc Natl Acad Sci U S A ; 107(2): 940-5, 2010 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-20080780

RESUMEN

Protected areas are crucial for biodiversity conservation because they provide safe havens for species threatened by land-use change and resulting habitat loss. However, protected areas are only effective when they stop habitat loss within their boundaries, and are connected via corridors to other wild areas. The effectiveness of protected areas is threatened by development; however, the extent of this threat is unknown. We compiled spatially-detailed housing growth data from 1940 to 2030, and quantified growth for each wilderness area, national park, and national forest in the conterminous United States. Our findings show that housing development in the United States may severely limit the ability of protected areas to function as a modern "Noah's Ark." Between 1940 and 2000, 28 million housing units were built within 50 km of protected areas, and 940,000 were built within national forests. Housing growth rates during the 1990s within 1 km of protected areas (20% per decade) outpaced the national average (13%). If long-term trends continue, another 17 million housing units will be built within 50 km of protected areas by 2030 (1 million within 1 km), greatly diminishing their conservation value. US protected areas are increasingly isolated, housing development in their surroundings is decreasing their effective size, and national forests are even threatened by habitat loss within their administrative boundaries. Protected areas in the United States are thus threatened similarly to those in developing countries. However, housing growth poses the main threat to protected areas in the United States whereas deforestation is the main threat in developing countries.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Vivienda/estadística & datos numéricos , Anciano , Conducción de Automóvil/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Agricultura Forestal/tendencias , Vivienda/tendencias , Humanos , Jubilación/estadística & datos numéricos , Estados Unidos , Vida Silvestre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...