Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fish Biol ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38553910

RESUMEN

Mathematical and statistical models underlie many of the world's most important fisheries management decisions. Since the 19th century, difficulty calibrating and fitting such models has been used to justify the selection of simple, stationary, single-species models to aid tactical fisheries management decisions. Whereas these justifications are reasonable, it is imperative that we quantify the value of different levels of model complexity for supporting fisheries management, especially given a changing climate, where old methodologies may no longer perform as well as in the past. Here we argue that cost-benefit analysis is an ideal lens to assess the value of model complexity in fisheries management. While some studies have reported the benefits of model complexity in fisheries, modeling costs are rarely considered. In the absence of cost data in the literature, we report, as a starting point, relative costs of single-species stock assessment and marine ecosystem models from two Australian organizations. We found that costs varied by two orders of magnitude, and that ecosystem model costs increased with model complexity. Using these costs, we walk through a hypothetical example of cost-benefit analysis. The demonstration is intended to catalyze the reporting of modeling costs and benefits.

2.
Conserv Biol ; 38(2): e14176, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37668112

RESUMEN

Biodiversity continues to decline despite protected area expansion and global conservation commitments. Biodiversity losses occur in existing protected areas, yet common methods used to select protected areas ignore postimplementation threats that reduce effectiveness. We developed a conservation planning framework that considers the ongoing anthropogenic threats within protected areas when selecting sites and the value of planning for costly threat-mitigating activities (i.e., enforcement) at the time of siting decisions. We applied the framework to a set of landscapes that contained the range of possible correlations between species richness and threat. Accounting for threats and implementing enforcement activities increased benefits from protected areas without increasing budgets. Threat information was valuable in conserving more species per spending level even without enforcement, especially on landscapes with randomly distributed threats. Benefits from including threat information and enforcement were greatest when human threats peaked in areas of high species richness and were lowest where human threats were negatively associated with species richness. Because acquiring information on threats and using threat-mitigating activities are costly, our findings can guide decision-makers regarding the settings in which to pursue these planning steps.


Anticipación de las amenazas antropogénicas durante la adquisición de áreas protegidas nuevas Resumen La biodiversidad sigue declinando a pesar de la expansión de áreas protegidas y los compromisos mundiales con la conservación. La pérdida de la biodiversidad ocurre en las áreas protegidas existentes, y todavía los métodos comunes usados para seleccionar las áreas protegidas ignoran las amenazas posteriores a la implementación, las cuales reducen la efectividad. Desarrollamos un marco de planeación de la conservación que considera las amenazas antropogénicas actuales dentro de las áreas protegidas durante la selección de sitios y el valor de la planeación de actividades mitigantes costosas, como la aplicación, al momento de decidir. Aplicamos nuestro marco a un conjunto de paisajes que comprende el rango de correlaciones posibles entre las amenazas y la riqueza de especies. Si consideramos las amenazas y la implementación de actividades de aplicación, los beneficios de las áreas protegidas incrementan sin incrementar el presupuesto. La información sobre las amenazas fue importante para la conservación de especies por nivel de gasto incluso sin la aplicación, especialmente en paisajes con amenazas distribuidas de forma azarosa. Los beneficios de incluir la información sobre las amenazas y la aplicación fueron mayores cuando las amenazas humanas llegaron a su tope en áreas con gran riqueza de especies y alcanzaron su punto más bajo cuando las amenazas humanas estaban asociadas negativamente con la riqueza de especies. Ya que es costoso adquirir información sobre las amenazas y mitigar las amenazas con actividades, nuestros descubrimientos pueden informar a los tomadores de decisiones con respecto al entorno para seguir los pasos de la planeación.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Humanos , Ecosistema
3.
PLoS One ; 18(3): e0282668, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36921005

RESUMEN

Production of cultivated resources require additional planning that takes growth time into account. We formulate a mathematical programming model to determine the optimal location and sizing of growth facilities, impacted by resource survival rate as a function of its growth time. Our method informs strategic decisions regarding the number, location, and sizing of facilities, as well as operational decisions of optimal growth time for a cultivated resource in a facility to minimize total costs. We solve this facility location and sizing problem in the context of coral aquaculture for large-scale reef restoration using a two-stage algorithm and a linear mixed-integer solver. We assess growth time in a facility in terms of its impact on survival (post-deployment) considering growth quantity requirements and growth facility production constraints. We explore the sensitivity of optimal facility number, location, and sizing to changes in the geographic distribution of demand and cost parameters computationally. Results show that the relationship between growth time and survival is critical to optimizing operational decisions for grown resources. These results inform the value of data certainty to optimize the logistics of coral aquaculture production.


Asunto(s)
Antozoos , Animales , Modelos Teóricos , Acuicultura
4.
Trends Ecol Evol ; 37(3): 211-222, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34969536

RESUMEN

Social-ecological networks (SENs) represent the complex relationships between ecological and social systems and are a useful tool for analyzing and managing ecosystem services. However, mainstreaming the application of SENs in ecosystem service research has been hindered by a lack of clarity about how to match research questions to ecosystem service conceptualizations in SEN (i.e., as nodes, links, attributes, or emergent properties). Building from different disciplines, we propose a typology to represent ecosystem service in SENs and identify opportunities and challenges of using SENs in ecosystem service research. Our typology provides guidance for this growing field to improve research design and increase the breadth of questions that can be addressed with SEN to understand human-nature interdependencies in a changing world.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos
5.
Glob Chang Biol ; 27(9): 1692-1703, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33629799

RESUMEN

Globally, collapse of ecosystems-potentially irreversible change to ecosystem structure, composition and function-imperils biodiversity, human health and well-being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km2 , from Australia's coral reefs to terrestrial Antarctica. Pressures from global climate change and regional human impacts, occurring as chronic 'presses' and/or acute 'pulses', drive ecosystem collapse. Ecosystem responses to 5-17 pressures were categorised as four collapse profiles-abrupt, smooth, stepped and fluctuating. The manifestation of widespread ecosystem collapse is a stark warning of the necessity to take action. We present a three-step assessment and management framework (3As Pathway Awareness, Anticipation and Action) to aid strategic and effective mitigation to alleviate further degradation to help secure our future.


Asunto(s)
Arrecifes de Coral , Ecosistema , Regiones Antárticas , Biodiversidad , Cambio Climático , Humanos
6.
PLoS One ; 15(8): e0236399, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32845878

RESUMEN

Climate change is impacting coral reefs now. Recent pan-tropical bleaching events driven by unprecedented global heat waves have shifted the playing field for coral reef management and policy. While best-practice conventional management remains essential, it may no longer be enough to sustain coral reefs under continued climate change. Nor will climate change mitigation be sufficient on its own. Committed warming and projected reef decline means solutions must involve a portfolio of mitigation, best-practice conventional management and coordinated restoration and adaptation measures involving new and perhaps radical interventions, including local and regional cooling and shading, assisted coral evolution, assisted gene flow, and measures to support and enhance coral recruitment. We propose that proactive research and development to expand the reef management toolbox fast but safely, combined with expedient trialling of promising interventions is now urgently needed, whatever emissions trajectory the world follows. We discuss the challenges and opportunities of embracing new interventions in a race against time, including their risks and uncertainties. Ultimately, solutions to the climate challenge for coral reefs will require consideration of what society wants, what can be achieved technically and economically, and what opportunities we have for action in a rapidly closing window. Finding solutions that work for coral reefs and people will require exceptional levels of coordination of science, management and policy, and open engagement with society. It will also require compromise, because reefs will change under climate change despite our best interventions. We argue that being clear about society's priorities, and understanding both the opportunities and risks that come with an expanded toolset, can help us make the most of a challenging situation. We offer a conceptual model to help reef managers frame decision problems and objectives, and to guide effective strategy choices in the face of complexity and uncertainty.


Asunto(s)
Antozoos/crecimiento & desarrollo , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Aclimatación/fisiología , Animales , Arrecifes de Coral , Modelos Teóricos
7.
Ecol Lett ; 23(4): 607-619, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31989772

RESUMEN

Well-intentioned environmental management can backfire, causing unforeseen damage. To avoid this, managers and ecologists seek accurate predictions of the ecosystem-wide impacts of interventions, given small and imprecise datasets, which is an incredibly difficult task. We generated and analysed thousands of ecosystem population time series to investigate whether fitted models can aid decision-makers to select interventions. Using these time-series data (sparse and noisy datasets drawn from deterministic Lotka-Volterra systems with two to nine species, of known network structure), dynamic model forecasts of whether a species' future population will be positively or negatively affected by rapid eradication of another species were correct > 70% of the time. Although 70% correct classifications is only slightly better than an uninformative prediction (50%), this classification accuracy can be feasibly improved by increasing monitoring accuracy and frequency. Our findings suggest that models may not need to produce well-constrained predictions before they can inform decisions that improve environmental outcomes.


Asunto(s)
Ecología , Ecosistema , Modelos Biológicos , Dinámica Poblacional
8.
Ecol Appl ; 30(3): e02057, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31837241

RESUMEN

Understanding the trade-offs between biodiversity conservation and agricultural production has become a fundamental question in sustainability science. Substantial research has focused on how species' populations respond to agricultural intensification, with the goal to understand whether conservation policies that spatially separate agriculture and conservation or, alternatively, integrate the two are more beneficial. Spatial heterogeneity in both species abundance and agricultural productivity have been largely left out of this discussion, although these patterns are ubiquitous from local to global scales due to varying land capacity. Here, we address the question of how to align agricultural production and biodiversity conservation in heterogeneous landscapes. Using model simulations of species abundance and agricultural yields, we show that trade-offs between agricultural production and species' abundance can be reduced by minimizing the cost (in terms of species abundance) of agricultural production. We find that when species' abundance and agricultural yields vary across landscapes, the optimal strategy to minimize trade-offs is rarely pure land sparing or land sharing. Instead, landscapes that combine elements of both strategies are optimal. Additionally, we show how the reference population of a species is defined has important influences on optimization results. Our findings suggest that in the real world, understanding the impact of heterogeneous land capacity on biodiversity and agricultural production is crucial to designing multi-use landscapes that jointly maximize conservation and agricultural benefits.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Agricultura , Ecosistema
9.
PLoS One ; 14(1): e0209619, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30625183

RESUMEN

Single species conservation unites disparate partners for the conservation of one species. However, there are widespread concerns that single species conservation biases conservation efforts towards charismatic species at the expense of others. Here we investigate the extent to which sage grouse (Centrocercus sp.) conservation, the largest public-private conservation effort for a single species in the US, provides protections for other species from localized and landscape-scale threats. We compared the coverage provided by sage grouse Priority Areas for Conservation (PACs) to 81 sagebrush-associated vertebrate species distributions with potential coverage under multi-species conservation prioritization generated using the decision support tool Zonation. PACs. We found that the current PAC prioritization approach was not statistically different from a diversity-based prioritization approach and covers 23.3% of the landscape, and 24.8%, on average, of the habitat of the 81 species. The proportion of each species distribution at risk was lower inside PACs as compared to the region as a whole, even without management (land use change 30% lower, cheatgrass invasion 19% lower). Whether or not bias away from threat represents the most efficient use of conservation effort is a matter of considerable debate, though may be pragmatic in this landscape where capacity to address these threats is limited. The approach outlined here can be used to evaluate biological equitability of protections provided by flagship species in other settings.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Galliformes , Pradera , Animales , Artemisia
10.
Theor Popul Biol ; 109: 44-53, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26948289

RESUMEN

Increasing the colonization rate of metapopulations can improve persistence, but can also increase exposure to threats. To make good decisions, managers must understand whether increased colonization is beneficial or detrimental to metapopulation persistence. While a number of studies have examined interactions between metapopulations, colonization, and threats, they have assumed that threat dynamics respond linearly to changes in colonization. Here, we determined when to increase colonization while explicitly accounting for non-linear dependencies between a metapopulation and its threats. We developed patch occupancy metapopulation models for species susceptible to abiotic, generalist, and specialist threats and modeled the total derivative of the equilibrium proportion of patches occupied by each metapopulation with respect to the colonization rate. By using the total derivative, we developed a rule for determining when to increase metapopulation colonization. This rule was applied to a simulated metapopulation where the dynamics of each threat responded to increased colonization following a power function. Before modifying colonization, we show that managers must understand: (1) whether a metapopulation is susceptible to a threat; (2) the type of threat acting on a metapopulation; (3) which component of threat dynamics might depend on colonization, and; (4) the likely response of a threat-dependent variable to changes in colonization. The sensitivity of management decisions to these interactions increases uncertainty in conservation planning decisions.


Asunto(s)
Ecosistema , Modelos Biológicos , Dinámica Poblacional , Incertidumbre
11.
Ecol Appl ; 24(7): 1780-92, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-29210237

RESUMEN

Fences that exclude alien invasive species are used to reduce predation pressure on reintroduced threatened wildlife. Planning these continuously managed systems of reserves raises an important extension of the Single Large or Several Small (SLOSS) reserve planning framework: the added complexity of ongoing management. We investigate the long-term cost-efficiency of a single large or two small predator exclusion fences in the arid Australian context of reintroducing bilbies Macrotis lagotis, and we highlight the broader significance of our results with sensitivity analysis. A single fence more frequently results in a much larger net cost than two smaller fences. We find that the cost-efficiency of two fences is robust to strong demographic and environmental uncertainty, which can help managers to mitigate the risk of incurring high costs over the entire life of the project.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Animales , Análisis Costo-Beneficio , Monitoreo del Ambiente , Especies Introducidas , Marsupiales/fisiología , Modelos Biológicos , Dinámica Poblacional , Australia Occidental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...