Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbes Infect ; 25(7): 105167, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37271368

RESUMEN

Eradication of Helicobacter pylori, the class 1 carcinogen, faces several obstacles, which demand alternative options to conventional drug development methods. Alanine racemase (Alr) was proposed as H. pylori drug target, inhibited by propanoic acid (PA), in a previous in silico study. We investigated the possible treatment of H. pylori infection through Alr inhibition. A new model of H. pylori Alr was built, validated, and the binding of PA to the active site was modelled via molecular docking with a good docking score. PA minimum inhibitory concentration (MIC) against H. pylori ATCC 43504 and six H. pylori clinical isolates ranged from 312.5 to 416.7 ± 180 µg/ml and remained unchanged after 14 serial passages in increasing PA concentrations. The minimum bactericidal concentration of PA was 625 µg/ml. Selective Alr inhibition was confirmed by a significant PA MIC increase with increasing d-alanine concentrations. Similar PA MIC in other tested pathogens was recorded (312.5-625 µg/ml). PA lacked cytotoxicity in tested cell lines and efficiently eradicated H. pylori in a rat infection model. In conclusion, Alr is a promising broad-spectrum drug target, inhibited by PA without resistance development by repeated exposure for 14 serial passages.


Asunto(s)
Alanina Racemasa , Infecciones por Helicobacter , Helicobacter pylori , Ratas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Alanina Racemasa/química , Simulación del Acoplamiento Molecular , Propionatos/uso terapéutico , Infecciones por Helicobacter/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
2.
Front Microbiol ; 13: 1019666, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523828

RESUMEN

Effective eradication therapy for Helicobacter pylori is a worldwide demand. Aspartate α-decarboxylase (ADC) was reported as a drug target in H. pylori, in an in silico study, with malonic acid (MA) as its inhibitor. We evaluated eradicating H. pylori infection through ADC inhibition and the possibility of resistance development. MA binding to ADC was modeled via molecular docking. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of MA were determined against H. pylori ATCC 43504, and a clinical H. pylori isolate. To confirm selective ADC inhibition, we redetermined the MIC in the presence of products of the inhibited enzymatic pathway: ß-alanine and pantothenate. HPLC was used to assay the enzymatic activity of H. pylori 6x-his tagged ADC in the presence of different MA concentrations. H. pylori strains were serially exposed to MA for 14 passages, and the MICs were determined. Cytotoxicity in different cell lines was tested. The efficiency of ADC inhibition in treating H. pylori infections was evaluated using a Sprague-Dawley (SD) rat infection model. MA spectrum of activity was determined in different pathogens. MA binds to H. pylori ADC active site with a good docking score. The MIC of MA against H. pylori ranged from 0.5 to 0.75 mg/mL with MBC of 1.5 mg/mL. Increasing ß-alanine and pantothenate concentrations proportionally increased MA MIC. The 6x-his tagged ADC activity decreased by increasing MA concentration. No resistance to ADC inhibition was recorded after 14 passages; MA lacked cytotoxicity in all tested cell lines. ADC inhibition effectively eradicated H. pylori infection in SD rats. MA had MIC between 0.625 to 1.25 mg/mL against the tested bacterial pathogens. In conclusion, ADC is a promising target for effectively eradicating H. pylori infection that is not affected by resistance development, besides being of broad-spectrum presence in different pathogens. MA provides a lead molecule for the development of an anti-helicobacter ADC inhibitor. This provides hope for saving the lives of those at high risk of infection with the carcinogenic H. pylori.

3.
Diagnostics (Basel) ; 12(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36359534

RESUMEN

To reduce high mortality and morbidity rates, timely and proper treatment of methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infection is required. A multiplex polymerase reaction (mPCR)-based DNA lateral flow assay (MBDLFA) was developed as a point-of-care diagnostic for simultaneous identification of S. aureus, methicillin resistance, and vancomycin resistance directly from blood or blood cultures. A mPCR was developed to detect nuc, mecA, and vanA/B; its sensitivity, specificity, and limit of detection (LOD) were determined. The developed reaction was further modified for use in MBDLFA and its sensitivity for detection of target genes from artificially inoculated blood samples was checked. The optimized mPCR successfully detected nuc, mecA, and vanA/B from genomic DNA of bacterial colonies with LODs of 107, 107, and 105 CFU/mL, respectively. The reaction was sensitive and specific. The optimized mPCR was used in MBDLFA that detected nuc, mecA, and vanA/B with LODs of 107, 108, and 104 CFU/mL, respectively, directly from artificially inoculated blood. The developed MBDLFA can be used as a rapid, cheap point-of-care diagnostic for detecting S. aureus, MRSA, and vancomycin resistance directly from blood and blood cultures in ~2 h with the naked eye. This will reduce morbidity, mortality, and treatment cost in S. aureus bacteremia.

4.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361614

RESUMEN

Helicobacter pylori (H. pylori) has been identified as a group-1 definite carcinogen. As of yet, there is no available vaccine for this microorganism. Our study aimed to identify antigenic peptides in H. pylori using an in silico proteomic approach, and to evaluate their effectiveness as potential vaccine candidates. Four different peptide sequences were prioritized using the reverse vaccinology, namely, CagA1, CagA2, VacA, and SabA. Peptides emulsified with Freunde's adjuvant were used to immunize BALB/C mice. Subcutaneously immunized mice were challenged by oral administration of H. pylori. IgG, IgA, IL4, and IL17 were detected in mice sera. Histopathology of the dissected stomach of vaccinated and control mice were assessed using H&E stain. IgG was significantly higher in mice vaccinated with SabA. IL-4 was significantly increased in CagA1, CagA2, VacA, and SabA vaccinated mice compared to the adjuvant group. Additionally, histopathological examination of gastric tissue showed a protective effect in the vaccinated groups compared to adjuvant and PBS groups. Our findings indicate a promising effect of the tested epitopes, particularly the SabA antigen, to induce an immune response against H. pylori.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Animales , Ratones , Adyuvantes Inmunológicos , Anticuerpos Antibacterianos , Antígenos Bacterianos , Vacunas Bacterianas , Infecciones por Helicobacter/prevención & control , Inmunización , Inmunoglobulina G , Ratones Endogámicos BALB C , Proteómica , Vacunas de Subunidad
5.
Can J Microbiol ; 67(12): 894-901, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34731576

RESUMEN

This study investigated the effect of cefepime at sub-minimum inhibitory concentrations (sub-MICs) on in vitro biofilm formation (BF) by clinical isolates of Pseudomonas aeruginosa. The effect of cefepime at sub-MIC levels (½-1/256 MIC) on in vitro BF by six clinical isolates of P. aeruginosa was phenotypically assessed following 24 and 48 h of challenge using the tissue culture plate (TCP) assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to observe the change in expression of three biofilm-related genes, namely, a protease-encoding gene (lasA), fimbrial protein-encoding gene (cupA1), and alginate-encoding gene (algC), in a weak biofilm-producing strain of P. aeruginosa following 24 and 48 h of challenge with sub-MICs of cefepime. The BF morphology in response to cefepime was imaged using scanning electron microscopy (SEM). The TCP assay showed strain-, time-, and concentration-dependent changes in in vitro BF in P. aeruginosa following challenge with sub-MICs of cefepime, with a profound increase in strains with inherently no or weak biofilm-producing ability. RT-PCR revealed time-dependent upregulation in the expression of the investigated genes following challenge with ½ and » MIC levels, as confirmed by SEM. Cefepime at sub-MICs could upregulate the expression of BF-related genes and enhance BF by P. aeruginosa clinical isolates.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacología , Biopelículas , Cefepima , Humanos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/genética
6.
Biomolecules ; 10(11)2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233724

RESUMEN

Neonatal sepsis is a life-threatening condition and Staphylococcus aureus is one of its major causes. However, to date, no rapid and sensitive diagnostic tool has been developed for its direct detection. Bioinformatics analyses identified a surface-exposed 112-amino acid polypeptide of the cell wall protein NWMN_1649, a surface protein involved in cell aggregation and biofilm formation, as being a species-specific and highly conserved moiety. The polypeptide was cloned, purified, and used to immunize mice to raise specific immunoglobulins. The purified antibodies were conjugated to gold nano-particles and used to assemble an immunochromatographic strip (ICS). The developed prototype ICS detected as low as 5 µg purified polypeptide and 102 CFU/mL S. aureus within 15 min. The strip showed superior ability to directly detect S. aureus in neonatal sepsis blood specimens without prior sample processing. Moreover, it showed no cross-reaction in specimens infected with two other major causes of neonatal sepsis; coagulase-negative staphylococci and Klebsiella pneumoniae. The selected NWMN_1649-derived polypeptide demonstrates success as a promising biomolecule upon which a prototype ICS has been developed. This ICS provides a rapid, direct, sensitive, and specific option for the detection of S. aureus causing neonatal sepsis. Such a tool is urgently needed especially in resources-limited countries.


Asunto(s)
Cromatografía de Afinidad/métodos , Sepsis Neonatal/diagnóstico , Sepsis Neonatal/inmunología , Péptidos/química , Péptidos/inmunología , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/inmunología , Animales , Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/aislamiento & purificación , Biología Computacional , Simulación por Computador , Femenino , Humanos , Recién Nacido , Nanopartículas del Metal/química , Ratones Endogámicos BALB C , Sepsis Neonatal/sangre , Sepsis Neonatal/microbiología , Biosíntesis de Péptidos/inmunología , Péptidos/aislamiento & purificación , Sensibilidad y Especificidad , Infecciones Estafilocócicas/sangre , Staphylococcus aureus/citología , Staphylococcus aureus/inmunología
7.
Pathogens ; 9(9)2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32932580

RESUMEN

The class 1 carcinogen, Helicobacter pylori, is one of the World Health Organization's high priority pathogens for antimicrobial development. We used three subtractive proteomics approaches using protein pools retrieved from: chokepoint reactions in the BIOCYC database, the Kyoto Encyclopedia of Genes and Genomes, and the database of essential genes (DEG), to find putative drug targets and their inhibition by drug repurposing. The subtractive channels included non-homology to human proteome, essentiality analysis, sub-cellular localization prediction, conservation, lack of similarity to gut flora, druggability, and broad-spectrum activity. The minimum inhibitory concentration (MIC) of three selected ligands was determined to confirm anti-helicobacter activity. Seventeen protein targets were retrieved. They are involved in motility, cell wall biosynthesis, processing of environmental and genetic information, and synthesis and metabolism of secondary metabolites, amino acids, vitamins, and cofactors. The DEG protein pool approach was superior, as it retrieved all drug targets identified by the other two approaches. Binding ligands (n = 42) were mostly small non-antibiotic compounds. Citric, dipicolinic, and pyrophosphoric acid inhibited H. pylori at an MIC of 1.5-2.5 mg/mL. In conclusion, we identified potential drug targets in H. pylori, and repurposed their binding ligands as possible anti-helicobacter agents, saving time and effort required for the development of new antimicrobial compounds.

8.
Saudi Pharm J ; 27(6): 830-840, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31516325

RESUMEN

BACKGROUND: Life-threatening central venous catheter-related infections are primarily initiated by biofilm formation on the catheter surface. Antibiotic lock therapy is recommended for eradicating intraluminal biofilm. In the era of antibiotic resistance, antibiotics of natural origins provide an effective and cheap option for combating resistant strains. Garlic especially stole the spotlight because of its impressive antimicrobial effectiveness against such superbugs. AIM: Is to estimate the potential use of fresh garlic extract (FGE) as a lock agent against multi-drug resistant (MDR) bacteria. METHODS: The agar well diffusion and broth microdilution techniques were employed to test the antimicrobial activities of FGE against five MDR strains; E. coli, Pseudomonas aeruginosa (P. aeruginosa), Klebsiella pneumoniae (K. pneumoniae), Serratia marscens (S. marscens) and Methicillin-resistant Staphylococcus aureus (MRSA). Then the protective and therapeutic efficiencies of FGE against bacterial biofilms were in-vitro evaluated; at concentrations of 100, 75, 50 and 25%; in tissue culture plate (TCP) and on the polyurethane (PU) sheets using the crystal violet (CV) assay and colony-forming unit (CFU), respectively. Scanning electron microscopy (SEM) was also used to confirm eradication of biofilms on PU sheets. Finally, systemic and deep tissue infections by P. aeruginosa and MRSA were induced in mice that were then treated by FGE at either 100 or 200 mg/kg for seven days. Where the antibacterial activity was assessed by tissue and blood culturing at the end of the treatment period. Biochemical, hematological and histological parameters were also investigated. RESULTS: FGE exhibited potent in-vitro and in-vivo antibacterial and antibiofilm activities against MDR strains. It not only didn't exhibit toxicological effects at the hematological and the histological levels but also provided protective effects as demonstrated by the significant drop in the biochemical parameters. CONCLUSION: FGE has the potential to be used as a prophylactic and/or therapeutic lock agent against biofilm-associated infections caused by MDR bacteria.

9.
Infect Agent Cancer ; 13: 24, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30026792

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) infection has been recognized as a significant threat for gastric cancer. However, studies that investigated the oncogenic factors and antimicrobial resistance of H. pylori in Egyptian isolates with gastric cancer are rare. The current study aimed to examine: (1) The pattern of antimicrobial resistance of H. pylori isolates of Egyptian gastric cancer patients, and (2) the prevalence of Cytotoxin-associated gene A (CagA). METHODS: Samples were collected from patients with gastric cancer. Isolation of H. pylori was performed using Columbia blood agar supplemented with 10% horse blood, and selective supplement of H. pylori for 3 to 5 days at 37 °C under microaerophilic condition. Isolates were identified by biochemical traits of H. pylori: oxidase, urease and catalase tests. Antimicrobial susceptibility of H. pylori isolates was examined against five antimicrobial agents using disc diffusion method. After that, extraction of DNA and Polymerase Chain Reaction (PCR) were performed to amplify the target genes. RESULTS: Twelve samples were collected from six males and six females Egyptian patients with cancer with an age range from 22 to 65 years. These cases are scarce and samples were collected over a period of almost eleven months. All isolates were confirmed as positive H. pylori through colony morphology and biochemical tests. The most effective antibiotic found was ciprofloxacin whereas all isolates showed resistance to metronidazole and erythromycin. The target CagA oncogene gene with expected product size was reported and seven (out of twelve) isolates (58%) were identified as CagA positive. CONCLUSION: The current study is unique in two main aspects. First, it reported the pattern of antimicrobial susceptibility and prevalence of CagA gene in H. pylori from Egyptian patients. Second, it exclusively recruited isolates from gastric cancer patients which were confirmed by clinical and laparoscopic examination. The moderately high prevalence of CagA gene in Egyptian cancer patients calls for more vigilance against that oncogene.

10.
Infect Drug Resist ; 10: 479-498, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29263684

RESUMEN

OBJECTIVES: We set out to investigate the prevalence, different mechanisms, and clonal relatedness of multidrug resistance (MDR) among third-generation cephalosporin-resistant Gram-negative clinical isolates from Egypt. MATERIALS AND METHODS: A total of 118 third-generation cephalosporin-resistant Gram-negative clinical isolates were included in this study. Their antimicrobial susceptibility pattern was determined using Kirby-Bauer disk diffusion method. Efflux pump-mediated resistance was tested by the efflux-pump inhibitor-based microplate assay using chlorpromazine. Detection of different aminoglycoside-, ß-lactam-, and quinolone-resistance genes was done using polymerase chain reaction. The genetic diversity of MDR isolates was investigated using random amplification of polymorphic DNA. RESULTS: Most of the tested isolates exhibited MDR phenotypes (84.75%). The occurrence of efflux pump-mediated resistance in the different MDR species tested was 40%-66%. Acinetobacter baumannii isolates showed resistance to most of the tested antibiotics, including imipenem. The blaOXA-23-like gene was detected in 69% of the MDR A. baumannii isolates. The MDR phenotype was detected in 65% of Pseudomonas aeruginosa isolates, of which only 23% exhibited efflux pump-mediated resistance. On the contrary, efflux-mediated resistance to piperacillin and gentamicin was recorded in 47.5% of piperacillin-resistant and 25% of gentamicin-resistant MDR Enterobacteriaceae. Moreover, the plasmid-mediated quinolone-resistance genes (aac(6')-Ib-cr, qnrB, and qnrS) were detected in 57.6% and 83.33% of quinolone-resistant MDR Escherichia coli and Klebsiella pneumoniae isolates, respectively. The ß-lactamase-resistance gene blaSHV-31 was detected for the first time in one MDR K. pneumoniae isolate from an endotracheal tube specimen in Egypt, accompanied by blaTEM-1, blaCTX-M-15, blaCTX-M-14, aac(6')-Ib-cr, qnrS, and multidrug efflux-mediated resistance. CONCLUSION: MDR phenotypes are predominant among third-generation cephalosporin-resistant Gram-negative bacteria in Egypt and mediated by different mechanisms, with an increased role of efflux pumps in Enterobacteriaceae.

11.
Pol J Microbiol ; 66(2): 163-169, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28735317

RESUMEN

Aminoglycosides are used in treating a wide range of infections caused by Gram-positive and Gram-negative bacteria; however, aminoglycoside resistance is common and occurs by several mechanisms. Among these mechanisms is bacterial rRNA methylation by the 16S rRNA methyl transferase (16S-RMTase) enzymes; but data about the spread of this mechanism in Egypt are scarce. Cephalosporins are the most commonly used antimicrobial agents in Egypt; therefore, this study was conducted to determine the frequency of 16S-RMTase among third generation cephalosporin-resistant clinical isolates in Egypt. One hundred and twenty three cephalosporin resistant Gram-negative clinical isolates were screened for aminoglycosides resistance by the Kirby Bauer disk diffusion method and tested for possible production of 16S-RMTase. PCR testing and sequencing were used to confirm the presence of 16S-RMTase and the associated antimicrobial resistance determinants, as well as the genetic region surrounding the armA gene. Out of 123 isolates, 66 (53.66%) were resistant to at least one aminoglycoside antibiotic. Only one Escherichia coli isolate (E9ECMO) which was totally resistant to all tested aminoglycosides, was confirmed to have the armA gene in association with blaTEM-1, blaCTX-M-15, blaCTX-M-14 and aac(6)-Ib genes. The armA gene was found to be carried on a large A/C plasmid. Genetic mapping of the armA surrounding region revealed, for the first time, the association of armA with aac(6)-Ib on the same transposon. In conclusion, the isolation frequency of 16S-RMTase was low among the tested aminoglycoside-resistant clinical samples. However, a novel composite transposon has been detected conferring high-level aminoglycosides resistance.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , ARN Ribosómico 16S , Aminoglicósidos , Egipto , Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/genética , Metiltransferasas/genética , Pruebas de Sensibilidad Microbiana , Plásmidos , beta-Lactamasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA