Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731855

RESUMEN

The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.


Asunto(s)
Cricetulus , Modelos Animales de Enfermedad , Esfingomielina Fosfodiesterasa , Canales Catiónicos TRPM , beta-Ciclodextrinas , Animales , Esfingomielina Fosfodiesterasa/metabolismo , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/genética , Ratones , Humanos , Células CHO , beta-Ciclodextrinas/farmacología , Células HEK293 , Microdominios de Membrana/metabolismo , Microdominios de Membrana/efectos de los fármacos , Dolor/tratamiento farmacológico , Dolor/metabolismo , Colesterol/metabolismo , Masculino , Analgésicos/farmacología , Analgésicos/uso terapéutico , Pregnenolona/farmacología , Supervivencia Celular/efectos de los fármacos
2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612571

RESUMEN

Osteosarcoma is a highly malignant, painful cancer with poor treatment opportunities and a bad prognosis. Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are non-selective cation channels that have been of great interest in cancer, as their expression is increased in some malignancies. In our study we aim to characterize the expression and functionality of the TRPA1 and TRPV1 channels in human and mouse osteosarcoma tissues and in a mouse cell line. TRPA1/Trpa1 and TRPV1/Trpv1 mRNA expressions were demonstrated by PCR gel electrophoresis and RNAscope in situ hybridization. The function of these channels was confirmed by their radioactive 45Ca2+ uptake in response to the TRPA1 agonist, Allyl-isothiocyanate (AITC), and TRPV1 agonist, capsaicin, in K7M2 cells. An ATP-based K2M7 cell viability luminescence assay was used to determine cell viability after AITC or capsaicin treatments. Both TRPA1/Trpa1 and TRPV1/Trpv1 were expressed similarly in human and mouse osteosarcoma tissues, while Trpa1 transcripts were more abundantly present in K7M2 cells. TRPA1 activation with 200 µM AITC induced a significant 45Ca2+ influx into K7M2 cells, and the antagonist attenuated this effect. In accordance with the lower Trpv1 expression, capsaicin induced a moderate 45Ca2+ uptake, which did not reach the level of statistical significance. Both AITC and capsaicin significantly reduced K7M2 cell viability, demonstrating EC50 values of 22 µM and 74 µM. The viability-decreasing effect of AITC was significantly but only partially antagonized by HC-030031, but the action of capsaicin was not affected by the TRPV1 antagonist capsazepine. We provide here the first data on the functional expression of the TRPA1 and TRPV1 ion channels in osteosarcoma, suggesting novel diagnostic and/or therapeutic perspectives.


Asunto(s)
Neoplasias Óseas , Radioisótopos de Calcio , Isotiocianatos , Osteosarcoma , Canal Catiónico TRPA1 , Canales Catiónicos TRPV , Animales , Humanos , Ratones , Neoplasias Óseas/genética , Capsaicina/farmacología , Osteosarcoma/genética , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
3.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542266

RESUMEN

Numerous studies have indicated a link between vaccines and the exacerbation of autoimmune diseases including rheumatoid arthritis (RA). However, there is no consensus in clinical practice regarding the optimal timing of immunization. Therefore, this study aimed to investigate the impact of the 3Fluart influenza vaccine on the complete Freund's adjuvant (CFA)-induced chronic arthritis rat model and to identify new biomarkers with clinical utility. CFA was injected into the plantar surface of one hind paw and the root of the tail on day 0, and the tail root injection was repeated on day 1. Flu vaccination was performed on day 1 or 7. Paw volume was measured by plethysmometry, mechanonociceptive threshold by dynamic plantar aesthesiometry, neutrophil myeloperoxidase (MPO) activity, and vascular leakage using in vivo optical imaging throughout the 21-day experiment. Inflammatory markers were determined by Western blot and histopathology. CFA-induced swelling, an increase in MPO activity, plasma extravasation in the tibiotarsal joint. Mechanical hyperalgesia of the hind paw was observed 3 days after the injection, which gradually decreased. Co-administration of the flu vaccine on day 7 but not on day 1 resulted in significantly increased heme oxygenase 1 (HO-1) expression. The influenza vaccination appears to have a limited impact on the progression and severity of the inflammatory response and associated pain. Nevertheless, delayed vaccination could alter the disease activity, as indicated by the findings from assessments of edema and inflammatory biomarkers. HO-1 may serve as a potential marker for the severity of inflammation, particularly in the case of delayed vaccination. However, further investigation is needed to fully understand the regulation and role of HO-1, a task that falls outside the scope of the current study.


Asunto(s)
Artritis Experimental , Gripe Humana , Ratas , Animales , Humanos , Artritis Experimental/metabolismo , Adyuvante de Freund/efectos adversos , Hiperalgesia/metabolismo , Inflamación , Vacunación , Progresión de la Enfermedad
4.
Front Cell Dev Biol ; 12: 1334130, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481530

RESUMEN

Transient Receptor Potential Vanilloid 1 (TRPV1) and Ankyrin 1 (TRPA1) are nonselective cation channels expressed in primary sensory neurons and several other non-neuronal structures such as immune cells, keratinocytes, and vascular smooth muscle cells. They play important roles in nociception, pain processing and their chanellopathies are associated with the development of several pathological conditions. They are located in cholesterol- and sphingolipid-rich membrane lipid raft regions serving as platforms to modulate their activations. We demonstrated earlier that disruption of these lipid rafts leads to decreased TRP channel activation and exerts analgesic effects. Cyclodextrins are macrocyclic molecules able to form host-guest complexes with cholesterol and deplete it from the membrane lipid rafts. The aim of this study was to investigate 8 structurally different (methylated and non-methylated) CD derivatives on cell viability, mitochondrial membrane potential, membrane composition and activation abilities of the TRPV1 and TRPA1 channels. We showed that non-methylated derivatives have preferable safety profiles compared to methylated ones. Furthermore, methylated derivatives reduced mitochondrial membrane potential. However, all investigated derivatives influence the ordered cell membrane structure depleting membrane cholesterol and inhibit the TRPV1 agonist capsaicin- and the TRPA1 agonist allyl isothiocyanate-induced Ca2+-influx. This mechanism of action might provide novel perspectives for the development of peripherally acting analgesics via indirectly decreasing the generation and transmission of nociceptive signals.

5.
Curr Opin Pharmacol ; 75: 102432, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38290404

RESUMEN

Chronic pain conditions are unmet medical needs, since the available drugs, opioids, non-steroidal anti-inflammatory/analgesic drugs and adjuvant analgesics do not provide satisfactory therapeutic effect in a great proportion of patients. Therefore, there is an urgent need to find novel targets and novel therapeutic approaches that differ from classical pharmacological receptor antagonism. Most ion channels and receptors involved in pain sensation and processing such as Transient Receptor Potential ion channels, opioid receptors, P2X purinoreceptors and neurokinin 1 receptor are located in the lipid raft regions of the plasma membrane. Targeting the membrane lipid composition and structure by sphingolipid or cholesterol depletion might open future perspectives for the therapy of chronic inflammatory, neuropathic or cancer pain, most importantly acting at the periphery.


Asunto(s)
Analgesia , Dolor , Humanos , Dolor/tratamiento farmacológico , Dolor/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos Opioides/uso terapéutico , Antiinflamatorios no Esteroideos/uso terapéutico , Enfermedad Crónica , Canales Iónicos/uso terapéutico
6.
Temperature (Austin) ; 10(1): 13-34, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38059854

RESUMEN

This paper is dedicated to the memory of János Szolcsányi (1938-2018), an outstanding Hungarian scientist. Among analgesics that act on pain receptors, he identified capsaicin as a selective lead molecule. He studied the application of capsaicin and revealed several physiological (pain, thermoregulation) and pathophysiological (inflammation, gastric ulcer) mechanisms. He discovered a new neuroregulatory system without sensory efferent reflex and investigated its pharmacology. The authors of this review are his former Ph.D. students who carried out their doctoral work in Szolcsányi's laboratory between 1985 and 2010 and report on the scientific results obtained under his guidance. His research group provided evidence for the triple function of the peptidergic capsaicin-sensitive sensory neurons including classical afferent function, local efferent responses, and remote, hormone-like anti-inflammatory, and antinociceptive actions. They also proposed somatostatin receptor type 4 as a promising drug target for the treatment of pain and inflammation. They revealed that neonatal capsaicin treatment caused no acute neuronal death but instead long-lasting selective ultrastructural and functional changes in B-type sensory neurons, similar to adult treatment. They described that lipid raft disruption diminished the agonist-induced channel opening of the TRPV1, TRPA1, and TRPM8 receptors in native sensory neurons. Szolcsányi's group has developed new devices for noxious heat threshold measurement: an increasing temperature hot plate and water bath. This novel approach proved suitable for assessing the thermal antinociceptive effects of analgesics as well as for analyzing peripheral mechanisms of thermonociception.

7.
Front Mol Neurosci ; 16: 1186279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965042

RESUMEN

The tachykinin hemokinin-1 (HK-1) is involved in immunological processes, inflammation, and pain. Although the neurokinin 1 receptor (NK1R) is described as its main target, several effects are mediated by currently unidentified receptor(s). The role of HK-1 in pain is controversial, depending on the involvement of peripheral and central sensitization mechanisms in different models. We earlier showed the ability of HK-1 to activate the trigeminovascular system, but the mechanisms need to be clarified. Therefore, in this study, we investigated HK-1-induced transcriptomic alterations in cultured rat trigeminal ganglion (TRG) primary sensory neurons. HK-1 was applied for 6 or 24 h in 1 µM causing calcium-influx in these neurons, 500 nM not inducing calcium-entry was used for comparison. Next-generation sequencing was performed on the isolated RNA, and transcriptomic changes were analyzed to identify differentially expressed (DE) genes. Functional analysis was performed for gene annotation using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome databases. NK1R and Neurokinin receptor 2 (NK2R) were not detected. Neurokinin receptor 3 (NK3R) was around the detection limit, which suggests the involvement of other NKR isoforms or other receptors in HK-1-induced sensory neuronal activation. We found protease-activated receptor 1 (PAR1) and epidermal growth factor receptor (EGFR) as DE genes in calcium signaling. The transmembrane protein anthrax toxin receptor 2 (ANTXR2), a potential novel pain-related target, was upregulated. Acid-sensing ion channel 1; 3 (Asic1,3), N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors decreased, myelin production and maintenance related genes (Mbp, Pmp2, Myef2, Mpz) and GNDF changed by HK-1 treatment. Our data showed time and dose-dependent effects of HK-1 in TRG cell culture. Result showed calcium signaling as altered event, however, we did not detect any of NK receptors. Presumably, the activation of TRG neurons is independent of NK receptors. ANTXR2 is a potential new target, PAR-1 has also important role in pain, however their connection to HK-1 is unknown. These findings might highlight new targets or key mediators to solve how HK-1 acts on TRG.

8.
Sci Rep ; 13(1): 20030, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973885

RESUMEN

The Tac4 gene-derived hemokinin-1 (HK-1) binds to the NK1 receptor, similarly to Substance P, and plays a role in acute stress reactions and pain transmission in mice. Here we investigated Tac4 mRNA expression in stress and pain-related regions and its involvement in chronic restraint stress-evoked behavioral changes and pain using Tac4 gene-deleted (Tac4-/-) mice compared to C57Bl/6 wildtypes (WT). Tac4 mRNA was detected by in situ hybridization RNAscope technique. Touch sensitivity was assessed by esthesiometry, cold tolerance by paw withdrawal latency from 0°C water. Anxiety was evaluated in the light-dark box (LDB) and open field test (OFT), depression-like behavior in the tail suspension test (TST). Adrenal and thymus weights were measured at the end of the experiment. We found abundant Tac4 expression in the hypothalamic-pituitary-adrenal axis, but Tac4 mRNA was also detected in the hippocampus, amygdala, somatosensory and piriform cortices in mice, and in the frontal regions and the amygdala in humans. In Tac4-/- mice of both sexes, stress-induced mechanical, but not cold hyperalgesia was significantly decreased compared to WTs. Stress-induced behavioral alterations were mild or absent in male WT animals, while significant changes of these parameters could be detected in females. Thymus weight decrease can be observed in both sexes. Higher baseline anxiety and depression-like behaviors were detected in male but not in female HK-1-deficient mice, highlighting the importance of investigating both sexes in preclinical studies. We provided the first evidence for the potent nociceptive and stress regulating effects of HK-1 in chronic restraint stress paradigm. Identification of its targets might open new perspectives for therapy of stress-induced pain.


Asunto(s)
Dolor Crónico , Sistema Hipotálamo-Hipofisario , Humanos , Masculino , Animales , Femenino , Ratones , Sistema Hipófiso-Suprarrenal , Restricción Física , ARN Mensajero/genética , Estrés Psicológico/complicaciones
9.
Nat Genet ; 55(11): 1820-1830, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37919453

RESUMEN

Osteoporotic fracture is among the most common and costly of diseases. While reasonably heritable, its genetic determinants have remained elusive. Forearm fractures are the most common clinically recognized osteoporotic fractures with a relatively high heritability. To establish an atlas of the genetic determinants of forearm fractures, we performed genome-wide association analyses including 100,026 forearm fracture cases. We identified 43 loci, including 26 new fracture loci. Although most fracture loci associated with bone mineral density, we also identified loci that primarily regulate bone quality parameters. Functional studies of one such locus, at TAC4, revealed that Tac4-/- mice have reduced mechanical bone strength. The strongest forearm fracture signal, at WNT16, displayed remarkable bone-site-specificity with no association with hip fractures. Tall stature and low body mass index were identified as new causal risk factors for fractures. The insights from this atlas may improve fracture prediction and enable therapeutic development to prevent fractures.


Asunto(s)
Antebrazo , Fracturas Óseas , Animales , Ratones , Estudio de Asociación del Genoma Completo , Fracturas Óseas/genética , Densidad Ósea/genética , Factores de Riesgo
10.
Biomedicines ; 11(9)2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37760890

RESUMEN

Based on a prior university patent, the authors developed a novel type of bioimpedance-based test method to noninvasively detect nonalcoholic fatty liver disease (NAFLD). The development of a new potential NAFLD diagnostic procedure may help to understand the underlying mechanisms between NAFLD and severe liver diseases with a painless and easy-to-use paraclinical examination method, including the additional function to detect even the earlier stages of liver disease. The aim of this study is to present new results and the experiences gathered in relation to NAFLD progress during animal model and human clinical trials.

11.
J Pharm Pharmacol ; 75(12): 1581-1589, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37742055

RESUMEN

OBJECTIVES: It has previously been shown that the peptide (34Pro,35Phe)CGRP27-37 is a potent calcitonin gene-related peptide, CGRP receptor antagonist, and in this project we aimed to improve the antagonist potency through the structural modification of truncated C-terminal CGRP peptides. METHODS: Six peptide analogues were synthesized and the anti-CGRP activity confirmed using both in vitro and in vivo studies. KEY FINDINGS: A 10 amino acid-containing peptide VPTDVGPFAF-NH2 (P006) was identified as a key candidate to take forward for in vivo evaluation, where it was shown to be an effective antagonist after intraperitoneal injection into mice. P006 was formulated as a preparation suitable for nasal administration by spray drying with chitosan to form mucoadhesive microcarriers (9.55 ± 0.91 mm diameter) and a loading of 0.2 mg peptide per 20 mg dose. CONCLUSIONS: The project has demonstrated the potential of these novel small peptide CGRP antagonists, to undergo future preclinical evaluation as anti-migraine therapeutics.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Trastornos Migrañosos , Ratones , Animales , Péptido Relacionado con Gen de Calcitonina/uso terapéutico , Receptores de Péptido Relacionado con el Gen de Calcitonina , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/farmacología , Aminoácidos/química , Trastornos Migrañosos/tratamiento farmacológico
12.
Biomedicines ; 11(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37626651

RESUMEN

Somatostatin (SST) released from capsaicin-sensitive sensory nerves in response to stimulation exerts systemic anti-inflammatory, analgesic actions. Its elevation correlates with the extent of tissue injury. We measured plasma SST alterations during spine operations (scoliosis and herniated disc) to determine whether its release might be a general protective mechanism during painful conditions. Sampling timepoints were baseline (1), after: soft tissue retraction (2), osteotomy (3), skin closure (4), the following morning (5). Plasma SST-like immunoreactivity (SST-LI) determined by radioimmunoassay was correlated with pain intensity and the correction angle (Cobb angle). In scoliosis surgery, postoperative pain intensity (VAS 2.) 1 day after surgery significantly increased (from 1.44 SEM ± 0.68 to 6.77 SEM ± 0.82, p = 0.0028) and positively correlated with the Cobb angle (p = 0.0235). The baseline Cobb degree negatively correlated (p = 0.0459) with the preoperative SST-LI. The plasma SST-LI significantly increased in fraction 3 compared to the baseline (p < 0.05), and significantly decreased thereafter (p < 0.001). In contrast, in herniated disc operations no SST-LI changes were observed in either group. The VAS decreased after surgery both in the traditional (mean 6.83 to 2.29, p = 0.0005) and microdiscectomy groups (mean 7.22 to 2.11, p = 0.0009). More extensive and destructive scoliosis surgery might cause greater tissue damage with greater pain (inflammation), which results in a significant SST release into the plasma from the sensory nerves. SST is suggested to be involved in an endogenous postoperative analgesic (anti-inflammatory) mechanism.

13.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569621

RESUMEN

Capsaicin-sensitive peptidergic sensory nerves mediate triple actions: besides transmitting sensory and pain signals to the central nervous system (afferent function), they also have local and systemic efferent functions [...].


Asunto(s)
Neuronas Aferentes , Sistema Nervioso Periférico , Humanos , Neuronas Aferentes/fisiología , Vías Aferentes , Capsaicina/farmacología , Dolor , Inflamación
14.
Eur Neuropsychopharmacol ; 73: 96-107, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37156112

RESUMEN

The Transient Receptor Potential Vanilloid 1 (TRPV1) non-selective cation channel predominantly expressed in primary sensory neurons of the dorsal root and trigeminal ganglia mediates pain and neurogenic inflammation. TRPV1 mRNA and immunoreactivity were described in the central nervous system (CNS), but its precise expression pattern and function have not been clarified. Here we investigated Trpv1 mRNA expression in the mouse brain using ultrasensitive RNAScope in situ hybridization. The role of TRPV1 in anxiety, depression-like behaviors and memory functions was investigated by TRPV1-deficient mice and pharmacological antagonism by AMG9810. Trpv1 mRNA is selectively expressed in the supramammillary nucleus (SuM) co-localized with Vglut2 mRNA, but not with tyrosine hydroxylase immunopositivity demonstrating its presence in glutamatergic, but not dopaminergic neurons. TRPV1-deleted mice exhibited significantly reduced anxiety in the Light-Dark box and depression-like behaviors in the Forced Swim Test, but their performance in the Elevated Plus Maze as well as their spontaneous locomotor activity, memory and learning function in the Radial Arm Maze, Y-maze and Novel Object Recognition test were not different from WTs. AMG9810 (intraperitoneal injection 50 mg/kg) induced anti-depressant, but not anxiolytic effects. It is concluded that TRPV1 in the SuM might have functional relevance in mood regulation and TRPV1 antagonism could be a novel perspective for anti-depressant drugs.


Asunto(s)
Acrilamidas , Compuestos Bicíclicos Heterocíclicos con Puentes , Canales de Potencial de Receptor Transitorio , Ratones , Animales , Canales de Potencial de Receptor Transitorio/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Antidepresivos/farmacología , Hipotálamo Posterior/metabolismo , ARN Mensajero
15.
Front Immunol ; 14: 1182278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234175

RESUMEN

Objective: Despite intensive research on rheumatoid arthritis, the pathomechanism of the disease is still not fully understood and the treatment has not been completely resolved. Previously we demonstrated that the GTPase-activating protein, ARHGAP25 has a crucial role in the regulation of basic phagocyte functions. Here we investigate the role of ARHGAP25 in the complex inflammatory process of autoantibody-induced arthritis. Methods: Wild-type and ARHGAP25 deficient (KO) mice on a C57BL/6 background, as well as bone marrow chimeric mice, were treated i.p. with the K/BxN arthritogenic or control serum, and the severity of inflammation and pain-related behavior was measured. Histology was prepared, leukocyte infiltration, cytokine production, myeloperoxidase activity, and superoxide production were determined, and comprehensive western blot analysis was conducted. Results: In the absence of ARHGAP25, the severity of inflammation, joint destruction, and mechanical hyperalgesia significantly decreased, similarly to phagocyte infiltration, IL-1ß, and MIP-2 levels in the tibiotarsal joint, whereas superoxide production or myeloperoxidase activity was unchanged. We observed a significantly mitigated phenotype in KO bone marrow chimeras as well. In addition, fibroblast-like synoviocytes showed comparable expression of ARHGAP25 to neutrophils. Significantly reduced ERK1/2, MAPK, and I-κB protein signals were detected in the arthritic KO mouse ankles. Conclusion: Our findings suggest that ARHGAP25 has a key role in the pathomechanism of autoantibody-induced arthritis in which it regulates inflammation via the I-κB/NF-κB/IL-1ß axis with the involvement of both immune cells and fibroblast-like synoviocytes.


Asunto(s)
Artritis Experimental , Superóxidos , Animales , Ratones , Peroxidasa/efectos adversos , Ratones Endogámicos C57BL , Inflamación
16.
J Exp Med ; 220(7)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37074415

RESUMEN

Autoinflammatory diseases include a number of monogenic systemic inflammatory diseases, as well as acquired autoinflammatory diseases such as gout. Here, we show that the myeloid Src-family kinases Hck, Fgr, and Lyn are critical for experimental models of gout, as well as for genetically determined systemic inflammation in the Ptpn6me-v/me-v (motheaten viable) mouse model. The Hck-/-Fgr-/-Lyn-/- mutation abrogated various monosodium urate (MSU) crystal-induced pro-inflammatory responses of neutrophils, and protected mice from the development of gouty arthritis. The Src-family inhibitor dasatinib abrogated MSU crystal-induced responses of human neutrophils and reduced experimental gouty arthritis in mice. The Hck-/-Fgr-/-Lyn-/- mutation also abrogated spontaneous inflammation and prolonged the survival of the Ptpn6me-v/me-v mice. Spontaneous adhesion and superoxide release of Ptpn6me-v/me-v neutrophils were also abolished by the Hck-/-Fgr-/-Lyn-/- mutation. Excessive activation of tyrosine phosphorylation pathways in myeloid cells may characterize a subset of autoinflammatory diseases.


Asunto(s)
Artritis Gotosa , Gota , Enfermedades Autoinflamatorias Hereditarias , Ratones , Humanos , Animales , Familia-src Quinasas/metabolismo , Neutrófilos/metabolismo , Proteínas Proto-Oncogénicas c-hck/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Artritis Gotosa/metabolismo , Gota/metabolismo , Inflamación/metabolismo , Enfermedades Autoinflamatorias Hereditarias/metabolismo
17.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36982563

RESUMEN

Chronic stress causes several pain conditions including fibromyalgia. Its pathophysiological mechanisms are unknown, and the therapy is unresolved. Since the involvement of interleukin-1 (IL-1) has been described in stress and inflammatory pain but no data are available regarding stress-induced pain, we studied its role in a chronic restraint stress (CRS) mouse model. Female and male C57Bl/6J wild-type (WT) and IL-1αß-deficient (knock-out: IL-1 KO) mice were exposed to 6 h of immobilization/day for 4 weeks. Mechanonociception, cold tolerance, behavioral alterations, relative thymus/adrenal gland weights, microglia ionized calcium-binding adaptor molecule 1 (IBA1) and astrocyte glial fibrillary acidic protein (GFAP) integrated density, number and morphological transformation in pain-related brain regions were determined. CRS induced 15-20% mechanical hyperalgesia after 2 weeks in WT mice in both sexes, which was significantly reduced in female but not in male IL-1 KOs. Increased IBA1+ integrated density in the central nucleus of amygdala, primary somatosensory cortex hind limb representation part, hippocampus cornu ammonis area 3 (CA3) and periaqueductal gray matter (PAG) was present, accompanied by a cell number increase in IBA1+ microglia in stressed female WTs but not in IL-1 KOs. CRS induced morphological changes of GFAP+ astrocytes in WT but not in KO mice. Stress evoked cold hypersensitivity in the stressed animals. Anxiety and depression-like behaviors, thymus and adrenal gland weight changes were detectable in all groups after 2 but not 4 weeks of CRS due to adaptation. Thus, IL-1 mediates chronic stress-induced hyperalgesia in female mice, without other major behavioral alterations, suggesting the analgesic potentials of IL-1 in blocking drugs in stress-related pain syndromes.


Asunto(s)
Astrocitos , Hiperalgesia , Ratones , Masculino , Femenino , Animales , Hiperalgesia/metabolismo , Astrocitos/metabolismo , Microglía/metabolismo , Interleucina-1/metabolismo , Dolor/metabolismo , Encéfalo/metabolismo
18.
Redox Biol ; 62: 102670, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36958249

RESUMEN

Keratinocytes of the mammalian skin provide not only mechanical protection for the tissues, but also transmit mechanical, chemical, and thermal stimuli from the external environment to the sensory nerve terminals. Sensory nerve fibers penetrate the epidermal basement membrane and function in the tight intercellular space among keratinocytes. Here we show that epidermal keratinocytes produce hydrogen peroxide upon the activation of the NADPH oxidase dual oxidase 1 (DUOX1). This enzyme can be activated by increasing cytosolic calcium levels. Using DUOX1 knockout animals as a model system we found an increased sensitivity towards certain noxious stimuli in DUOX1-deficient animals, which is not due to structural changes in the skin as evidenced by detailed immunohistochemical and electron-microscopic analysis of epidermal tissue. We show that DUOX1 is expressed in keratinocytes but not in the neural sensory pathway. The release of hydrogen peroxide by activated DUOX1 alters both the activity of neuronal TRPA1 and redox-sensitive potassium channels expressed in dorsal root ganglia primary sensory neurons. We describe hydrogen peroxide, produced by DUOX1 as a paracrine mediator of nociceptive signal transmission. Our results indicate that a novel, hitherto unknown redox mechanism modulates noxious sensory signals.


Asunto(s)
Peróxido de Hidrógeno , NADPH Oxidasas , Animales , Oxidasas Duales/genética , Peróxido de Hidrógeno/metabolismo , NADPH Oxidasas/metabolismo , Peróxidos , Nocicepción , NADPH Oxidasa 1 , Mamíferos/metabolismo
19.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674439

RESUMEN

Cocaine- and amphetamine-regulated transcript (CART) peptides are involved in several physiological and pathological processes, but their mechanism of action is unrevealed due to the lack of identified receptor(s). We provided evidence for the antihyperalgesic effect of CART(55-102) by inhibiting dipeptidyl-peptidase 4 (DPP4) in astrocytes and consequently reducing neuroinflammation in the rat spinal dorsal horn in a carrageenan-evoked inflammation model. Both naturally occurring CART(55-102) and CART(62-102) peptides are present in the spinal cord. CART(55-102) is not involved in acute nociception but regulates spinal pain transmission during peripheral inflammation. While the full-length peptide with a globular motif contributes to hyperalgesia, its N-terminal inhibits this process. Although the anti-hyperalgesic effects of CART(55-102), CART(55-76), and CART(62-76) are blocked by opioid receptor antagonists in our inflammatory models, but not in neuropathic Seltzer model, none of them bind to any opioid or G-protein coupled receptors. DPP4 interacts with Toll-like receptor 4 (TLR4) signalling in spinal astrocytes and enhances the TLR4-induced expression of interleukin-6 and tumour necrosis factor alpha contributing to inflammatory pain. Depending on the state of inflammation, CART(55-102) is processed in the spinal cord, resulting in the generation of biologically active isoleucine-proline-isoleucine (IPI) tripeptide, which inhibits DPP4, leading to significantly decreased glia-derived cytokine production and hyperalgesia.


Asunto(s)
Hiperalgesia , Receptor Toll-Like 4 , Ratas , Animales , Hiperalgesia/metabolismo , Dipeptidil Peptidasa 4 , Isoleucina , Nocicepción , Dolor/metabolismo , Fragmentos de Péptidos/farmacología , Médula Espinal/metabolismo , Inflamación/metabolismo
20.
Biochem Pharmacol ; 209: 115419, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36693436

RESUMEN

Since the conventional and adjuvant analgesics have limited effectiveness frequently accompanied by serious side effects, development of novel, potent pain killers for chronic neuropathic and inflammatory pain conditions is a big challenge. Somatostatin (SS) regulates endocrine, vascular, immune and neuronal functions, cell proliferation through 5 Gi protein-coupled receptors (SST1-SST5). SS released from the capsaicin-sensitive peptidergic sensory nerves mediates anti-inflammatory and antinociceptive effects without endocrine actions via SST4. The therapeutic use of the native SS is limited by its diverse biological actions and short plasma elimination half-life. Therefore, SST4 selective SS analogues could be promising analgesic and anti-inflammatory drug candidates with new mode of action. TT-232 is a cyclic heptapeptide showing great affinity to SST4 and SST1. Here, we report the in silico SST4 receptor binding mechanism, in vitro binding (competition assay) and cAMP- decreasing effect of TT-232 in SST4-expressing CHO cells, as well as its analgesic and anti-inflammatory actions in chronic neuropathic pain and arthritis models using wildtype and SST4-deficient mice. TT-232 binds to SST4 with similar interaction energy (-11.03 kcal/mol) to the superagonist J-2156, displaces somatostatin from SST4 binding (10 nM to 30 µM) and inhibits forskolin-stimulated cAMP accumulation (EC50: 371.6 ± 58.03 nmol; Emax: 78.63 ± 2.636 %). Its i.p. injection (100, 200 µg/kg) results in significant, 35.7 % and 50.4 %, analgesic effects upon single administration in chronic neuropathic pain and repeated injection in arthritis models in wildtype, but not in SST4-deficient mice. These results provide evidence that the analgesic effect of TT-232 is mediated by SST4 activation, which might open novel drug developmental potentials. Chemical compounds Chemical compounds studied in this article TT-232 (PubChem CID: 74053735).


Asunto(s)
Artritis , Neuralgia , Cricetinae , Ratones , Animales , Cricetulus , Somatostatina/metabolismo , Somatostatina/farmacología , Receptores de Somatostatina/metabolismo , Analgésicos/uso terapéutico , Antiinflamatorios/farmacología , Neuralgia/tratamiento farmacológico , Artritis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...