Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 732, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969627

RESUMEN

To explore complex biological questions, it is often necessary to access various data types from public data repositories. As the volume and complexity of biological sequence data grow, public repositories face significant challenges in ensuring that the data is easily discoverable and usable by the biological research community. To address these challenges, the National Center for Biotechnology Information (NCBI) has created NCBI Datasets. This resource provides straightforward, comprehensive, and scalable access to biological sequences, annotations, and metadata for a wide range of taxa. Following the FAIR (Findable, Accessible, Interoperable, and Reusable) data management principles, NCBI Datasets offers user-friendly web interfaces, command-line tools, and documented APIs, empowering researchers to access NCBI data seamlessly. The data is delivered as packages of sequences and metadata, thus facilitating improved data retrieval, sharing, and usability in research. Moreover, this data delivery method fosters effective data attribution and promotes its further reuse. This paper outlines the current scope of data accessible through NCBI Datasets and explains various options for exploring and downloading the data.


Asunto(s)
Metadatos , Bases de Datos Genéticas , Estados Unidos , Almacenamiento y Recuperación de la Información
2.
Genome Res ; 32(1): 175-188, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34876495

RESUMEN

Eukaryotic genomes contain many nongenic elements that function in gene regulation, chromosome organization, recombination, repair, or replication, and mutation of those elements can affect genome function and cause disease. Although numerous epigenomic studies provide high coverage of gene regulatory regions, those data are not usually exposed in traditional genome annotation and can be difficult to access and interpret without field-specific expertise. The National Center for Biotechnology Information (NCBI) therefore provides RefSeq Functional Elements (RefSeqFEs), which represent experimentally validated human and mouse nongenic elements derived from the literature. The curated data set is comprised of richly annotated sequence records, descriptive records in the NCBI Gene database, reference genome feature annotation, and activity-based interactions between nongenic regions, target genes, and each other. The data set provides succinct functional details and transparent experimental evidence, leverages data from multiple experimental sources, is readily accessible and adaptable, and uses a flexible data model. The data have multiple uses for basic functional discovery, bioinformatics studies, genetic variant interpretation; as known positive controls for epigenomic data evaluation; and as reference standards for functional interactions. Comparisons to other gene regulatory data sets show that the RefSeqFE data set includes a wider range of feature types representing more areas of biology, but it is comparatively smaller and subject to data selection biases. RefSeqFEs thus provide an alternative and complementary resource for experimentally assayed functional elements, with future data set growth expected.


Asunto(s)
Biología Computacional , Genoma , Animales , Bases de Datos Genéticas , Eucariontes/genética , Humanos , Ratones , Estándares de Referencia
3.
Nucleic Acids Res ; 44(D1): D73-80, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26578580

RESUMEN

The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genómica , Animales , Genoma , Humanos , Internet , Ratones
4.
Nucleic Acids Res ; 43(Database issue): D36-42, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25355515

RESUMEN

The National Center for Biotechnology Information's (NCBI) Gene database (www.ncbi.nlm.nih.gov/gene) integrates gene-specific information from multiple data sources. NCBI Reference Sequence (RefSeq) genomes for viruses, prokaryotes and eukaryotes are the primary foundation for Gene records in that they form the critical association between sequence and a tracked gene upon which additional functional and descriptive content is anchored. Additional content is integrated based on the genomic location and RefSeq transcript and protein sequence data. The content of a Gene record represents the integration of curation and automated processing from RefSeq, collaborating model organism databases, consortia such as Gene Ontology, and other databases within NCBI. Records in Gene are assigned unique, tracked integers as identifiers. The content (citations, nomenclature, genomic location, gene products and their attributes, phenotypes, sequences, interactions, variation details, maps, expression, homologs, protein domains and external databases) is available via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programming utilities (E-Utilities and Entrez Direct) and for bulk transfer by FTP.


Asunto(s)
Bases de Datos Genéticas , Genes , Variación Genética , Genómica , Internet , National Library of Medicine (U.S.) , Fenotipo , Estados Unidos
5.
Nucleic Acids Res ; 41(Database issue): D925-35, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23193275

RESUMEN

The National Institutes of Health Genetic Testing Registry (GTR; available online at http://www.ncbi.nlm.nih.gov/gtr/) maintains comprehensive information about testing offered worldwide for disorders with a genetic basis. Information is voluntarily submitted by test providers. The database provides details of each test (e.g. its purpose, target populations, methods, what it measures, analytical validity, clinical validity, clinical utility, ordering information) and laboratory (e.g. location, contact information, certifications and licenses). Each test is assigned a stable identifier of the format GTR000000000, which is versioned when the submitter updates information. Data submitted by test providers are integrated with basic information maintained in National Center for Biotechnology Information's databases and presented on the web and through FTP (ftp.ncbi.nih.gov/pub/GTR/_README.html).


Asunto(s)
Bases de Datos Genéticas , Pruebas Genéticas , Sistema de Registros , Genes , Variación Genética , Humanos , Internet , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA