Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Intervalo de año de publicación
1.
Plants (Basel) ; 11(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35956449

RESUMEN

Sugarcane is an economically important crop that is used for the production of fuel ethanol. Diazotrophic bacteria have been isolated from sugarcane tissues, without causing visible plant anatomical changes or disease symptoms. These bacteria can be beneficial to the plant by promoting root growth and an increase in plant yield. Different rates of Biological Nitrogen Fixation (BNF) were observed in different genotypes. The aim of this work was to conduct a comprehensive molecular and physiological analysis of two model genotypes for contrasting BNF efficiency in order to unravel plant genes that are differentially regulated during a natural association with diazotrophic bacteria. A next-generation sequencing of RNA samples from the genotypes SP70-1143 (high-BNF) and Chunee (low-BNF) was performed. A differential transcriptome analysis showed that several pathways were differentially regulated among the two BNF-contrasting genotypes, including nitrogen metabolism, hormone regulation and bacteria recognition. Physiological analyses, such as nitrogenase and GS activity quantification, bacterial colonization, auxin response and root architecture evaluation, supported the transcriptome expression analyses. The differences observed between the genotypes may explain, at least in part, the differences in BNF contributions. Some of the identified genes might be involved in key regulatory processes for a beneficial association and could be further used as tools for obtaining more efficient BNF genotypes.

2.
Front Plant Sci ; 12: 636663, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995437

RESUMEN

The biogenesis of root-knot nematode (Meloidogyne spp.)-induced galls requires the hyperactivation of the cell cycle with controlled balance of mitotic and endocycle programs to keep its homeostasis. To better understand gall functioning and to develop new control strategies for this pest, it is essential to find out how the plant host cell cycle programs are responding and integrated during the nematode-induced gall formation. This work investigated the spatial localization of a number of gene transcripts involved in the pre-replication complex during DNA replication in galls and report their akin colocation with the cell cycle S-phase regulator Armadillo BTB Arabidopsis Protein 1 (ABAP1). ABAP1 is a negative regulator of pre-replication complex controlling DNA replication of genes involved in control of cell division and proliferation; therefore, its function has been investigated during gall ontogenesis. Functional analysis was performed upon ABAP1 knockdown and overexpression in Arabidopsis thaliana. We detected ABAP1 promoter activity and localized ABAP1 protein in galls during development, and its overexpression displayed significantly reduced gall sizes containing atypical giant cells. Profuse ABAP1 expression also impaired gall induction and hindered nematode reproduction. Remarkably, ABAP1 knockdown likewise negatively affected gall and nematode development, suggesting its involvement in the feeding site homeostasis. Microscopy analysis of cleared and nuclei-stained whole galls revealed that ABAP1 accumulation resulted in aberrant giant cells displaying interconnected nuclei filled with enlarged heterochromatic regions. Also, imbalanced ABAP1 expression caused changes in expression patterns of genes involved in the cell division control as demonstrated by qRT-PCR. CDT1a, CDT1b, CDKA;1, and CYCB1;1 mRNA levels were significantly increased in galls upon ABAP1 overexpression, possibly contributing to the structural changes in galls during nematode infection. Overall, data obtained in galls reinforced the role of ABAP1 controlling DNA replication and mitosis and, consequently, cell proliferation. ABAP1 expression might likely take part of a highly ordered mechanism balancing of cell cycle control to prevent gall expansion. ABAP1 expression might prevent galls to further expand, limiting excessive mitotic activity. Our data strongly suggest that ABAP1 as a unique plant gene is an essential component for cell cycle regulation throughout gall development during nematode infection and is required for feeding site homeostasis.

3.
Front Plant Sci ; 12: 642758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643370

RESUMEN

The correct development of a diploid sporophyte body and a haploid gametophyte relies on a strict coordination between cell divisions in space and time. During plant reproduction, these divisions have to be temporally and spatially coordinated with cell differentiation processes, to ensure a successful fertilization. Armadillo BTB Arabidopsis protein 1 (ABAP1) is a plant exclusive protein that has been previously reported to control proliferative cell divisions during leaf growth in Arabidopsis. Here, we show that ABAP1 binds to different transcription factors that regulate male and female gametophyte differentiation, repressing their target genes expression. During male gametogenesis, the ABAP1-TCP16 complex represses CDT1b transcription, and consequently regulates microspore first asymmetric mitosis. In the female gametogenesis, the ABAP1-ADAP complex represses EDA24-like transcription, regulating polar nuclei fusion to form the central cell. Therefore, besides its function during vegetative development, this work shows that ABAP1 is also involved in differentiation processes during plant reproduction, by having a dual role in regulating both the first asymmetric cell division of male gametophyte and the cell differentiation (or cell fusion) of female gametophyte.

4.
Planta ; 250(4): 1325-1337, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31273443

RESUMEN

MAIN CONCLUSION: Identification of the structural changes and cell wall-related genes likely involved in cell wall extension, cellular water balance and cell wall biosynthesis on embryonic axes during germination of soybean seeds. Cell wall is a highly organized and dynamic structure that provides mechanical support for the cell. During seed germination, the cell wall is critical for cell growth and seedling establishment. Although seed germination has been widely studied in several species, key aspects regarding the regulation of cell wall dynamics in germinating embryonic axes remain obscure. Here, we characterize the gene expression patterns of cell wall pathways and investigate their impact on the cell wall dynamics of embryonic axes of germinating soybean seeds. We found 2143 genes involved in cell wall biosynthesis and assembly in the soybean genome. Key cell wall genes were highly expressed at specific germination stages, such as expansins, UDP-Glc epimerases, GT family, cellulose synthases, peroxidases, arabinogalactans, and xyloglucans-related genes. Further, we found that embryonic axes grow through modulation of these specific cell wall genes with no increment in biomass. Cell wall structural analysis revealed a defined pattern of cell expansion and an increase in cellulose content during germination. In addition, we found a clear correlation between these structural changes and expression patterns of cell wall genes during germination. Taken together, our results provide a better understanding of the complex transcriptional regulation of cell wall genes that drive embryonic axes growth and expansion during soybean germination.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Glycine max/genética , Pared Celular/metabolismo , Germinación , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Glycine max/crecimiento & desarrollo
5.
PeerJ ; 7: e6080, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30648010

RESUMEN

Miniature inverted-repeat transposable elements (MITEs) have been associated with genic regions in plant genomes and may play important roles in the regulation of nearby genes via recruitment of small RNAs (sRNA) to the MITEs loci. We identified eight families of MITEs in the sugarcane genome assembly with MITE-Hunter pipeline. These sequences were found to be upstream, downstream or inserted into 67 genic regions in the genome. The position of the most abundant MITE (Stowaway-like) in genic regions, which we call AddIn-MITE, was confirmed in a WD40 gene. The analysis of four monocot species showed conservation of the AddIn-MITE sequence, with a large number of copies in their genomes. We also investigated the conservation of the AddIn-MITE' position in the WD40 genes from sorghum, maize and, in sugarcane cultivars and wild Saccharum species. In all analyzed plants, AddIn-MITE has located in WD40 intronic region. Furthermore, the role of AddIn-MITE-related sRNA in WD40 genic region was investigated. We found sRNAs preferentially mapped to the AddIn-MITE than to other regions in the WD40 gene in sugarcane. In addition, the analysis of the small RNA distribution patterns in the WD40 gene and the structure of AddIn-MITE, suggests that the MITE region is a proto-miRNA locus in sugarcane. Together, these data provide insights into the AddIn-MITE role in Andropogoneae grasses.

6.
Noncoding RNA ; 4(4)2018 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297664

RESUMEN

Long non-coding RNAs (lncRNAs) are involved in multiple regulatory pathways and its versatile form of action has disclosed a new layer in gene regulation. LncRNAs have their expression levels modulated during plant development, and in response to stresses with tissue-specific functions. In this study, we analyzed lncRNA from leaf samples collected from the legume Copaifera langsdorffii Desf. (copaíba) present in two divergent ecosystems: Cerrado (CER; Ecological Station of Botanical Garden in Brasília, Brazil) and Atlantic Rain Forest (ARF; Rio de Janeiro, Brazil). We identified 8020 novel lncRNAs, and they were compared to seven Fabaceae genomes and transcriptomes, to which 1747 and 2194 copaíba lncRNAs were mapped, respectively, to at least one species. The secondary structures of the lncRNAs that were conserved and differentially expressed between the populations were predicted using in silico methods. A few selected lncRNA were confirmed by RT-qPCR in the samples from both biomes; Additionally, the analysis of the lncRNA sequences predicted that some might act as microRNA (miRNA) targets or decoys. The emerging studies involving lncRNAs function and conservation have shown their involvement in several types of biotic and abiotic stresses. Thus, the conservation of lncRNAs among Fabaceae species considering their rapid turnover, suggests they are likely to have been under functional conservation pressure. Our results indicate the potential involvement of lncRNAs in the adaptation of C. langsdorffii in two different biomes.

7.
Trends Plant Sci ; 23(8): 731-747, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29934041

RESUMEN

Oscillation in energy levels is widely variable in dividing and differentiated cells. To synchronize cell proliferation and energy fluctuations, cell cycle-related proteins have been implicated in the regulation of mitochondrial energy-generating pathways in yeasts and animals. Plants have chloroplasts and mitochondria, coordinating the cell energy flow. Recent findings suggest an integrated regulation of these organelles and the nuclear cell cycle. Furthermore, reports indicate a set of interactions between the cell cycle and energy metabolism, coordinating the turnover of proteins in plants. Here, we discuss how cell cycle-related proteins directly interact with energy metabolism-related proteins to modulate energy homeostasis and cell cycle progression. We provide interfaces between cell cycle and energy metabolism-related proteins that could be explored to maximize plant yield.


Asunto(s)
Ciclo Celular , Metabolismo Energético , Plantas/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Cloroplastos/metabolismo , Mitocondrias/metabolismo , Fotosíntesis , Proteolisis
8.
Genet Mol Biol ; 40(1 suppl 1): 276-291, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28304073

RESUMEN

The multiplication of cells in all living organisms requires a tight regulation of DNA replication. Several mechanisms take place to ensure that the DNA is replicated faithfully and just once per cell cycle in order to originate through mitoses two new daughter cells that contain exactly the same information from the previous one. A key control mechanism that occurs before cells enter S phase is the formation of a pre-replication complex (pre-RC) that is assembled at replication origins by the sequential association of the origin recognition complex, followed by Cdt1, Cdc6 and finally MCMs, licensing DNA to start replication. The identification of pre-RC members in all animal and plant species shows that this complex is conserved in eukaryotes and, more importantly, the differences between kingdoms might reflect their divergence in strategies on cell cycle regulation, as it must be integrated and adapted to the niche, ecosystem, and the organism peculiarities. Here, we provide an overview of the knowledge generated so far on the formation and the developmental controls of the pre-RC mechanism in plants, analyzing some particular aspects in comparison to other eukaryotes.

9.
Noncoding RNA ; 3(4)2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29657296

RESUMEN

Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae. Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae, while the siRNAs were repressed in the presence of A. avenae. Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408-a copper-microRNA-was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5'RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly.

10.
Genet. mol. biol ; 40(1,supl.1): 276-291, 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-892392

RESUMEN

Abstract The multiplication of cells in all living organisms requires a tight regulation of DNA replication. Several mechanisms take place to ensure that the DNA is replicated faithfully and just once per cell cycle in order to originate through mitoses two new daughter cells that contain exactly the same information from the previous one. A key control mechanism that occurs before cells enter S phase is the formation of a pre-replication complex (pre-RC) that is assembled at replication origins by the sequential association of the origin recognition complex, followed by Cdt1, Cdc6 and finally MCMs, licensing DNA to start replication. The identification of pre-RC members in all animal and plant species shows that this complex is conserved in eukaryotes and, more importantly, the differences between kingdoms might reflect their divergence in strategies on cell cycle regulation, as it must be integrated and adapted to the niche, ecosystem, and the organism peculiarities. Here, we provide an overview of the knowledge generated so far on the formation and the developmental controls of the pre-RC mechanism in plants, analyzing some particular aspects in comparison to other eukaryotes.

11.
PLoS One ; 11(12): e0166473, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27936012

RESUMEN

Sugarcane is an important tropical crop mainly cultivated to produce ethanol and sugar. Crop productivity is negatively affected by Acidovorax avenae subsp avenae (Aaa), which causes the red stripe disease. Little is known about the molecular mechanisms triggered in response to the infection. We have investigated the molecular mechanism activated in sugarcane using a RNA-seq approach. We have produced a de novo transcriptome assembly (TR7) from sugarcane RNA-seq libraries submitted to drought and infection with Aaa. Together, these libraries present 247 million of raw reads and resulted in 168,767 reference transcripts. Mapping in TR7 of reads obtained from infected libraries, revealed 798 differentially expressed transcripts, of which 723 were annotated, corresponding to 467 genes. GO and KEGG enrichment analysis showed that several metabolic pathways, such as code for proteins response to stress, metabolism of carbohydrates, processes of transcription and translation of proteins, amino acid metabolism and biosynthesis of secondary metabolites were significantly regulated in sugarcane. Differential analysis revealed that genes in the biosynthetic pathways of ET and JA PRRs, oxidative burst genes, NBS-LRR genes, cell wall fortification genes, SAR induced genes and pathogenesis-related genes (PR) were upregulated. In addition, 20 genes were validated by RT-qPCR. Together, these data contribute to a better understanding of the molecular mechanisms triggered by the Aaa in sugarcane and opens the opportunity for the development of molecular markers associated with disease tolerance in breeding programs.


Asunto(s)
Comamonadaceae/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Saccharum/genética , Transcriptoma/genética , Comamonadaceae/fisiología , Ontología de Genes , Interacciones Huésped-Patógeno , Anotación de Secuencia Molecular , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharum/microbiología , Análisis de Secuencia de ARN/métodos
12.
BMC Plant Biol ; 15: 270, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26538092

RESUMEN

BACKGROUND: DNA replication and transcription are dynamic processes regulating plant development that are dependent on the chromatin accessibility. Proteins belonging to the Agenet/Tudor domain family are known as histone modification "readers" and classified as chromatin remodeling proteins. Histone modifications and chromatin remodeling have profound effects on gene expression as well as on DNA replication, but how these processes are integrated has not been completely elucidated. It is clear that members of the Agenet/Tudor family are important regulators of development playing roles not well known in plants. METHODS: Bioinformatics and phylogenetic analyses of the Agenet/Tudor Family domain in the plant kingdom were carried out with sequences from available complete genomes databases. 3D structure predictions of Agenet/Tudor domains were calculated by I-TASSER server. Protein interactions were tested in two-hybrid, GST pulldown, semi-in vivo pulldown and Tandem Affinity Purification assays. Gene function was studied in a T-DNA insertion GABI-line. RESULTS: In the present work we analyzed the family of Agenet/Tudor domain proteins in the plant kingdom and we mapped the organization of this family throughout plant evolution. Furthermore, we characterized a member from Arabidopsis thaliana named AIP1 that harbors Agenet/Tudor and DUF724 domains. AIP1 interacts with ABAP1, a plant regulator of DNA replication licensing and gene transcription, with a plant histone modification "reader" (LHP1) and with non modified histones. AIP1 is expressed in reproductive tissues and its down-regulation delays flower development timing. Also, expression of ABAP1 and LHP1 target genes were repressed in flower buds of plants with reduced levels of AIP1. CONCLUSIONS: AIP1 is a novel Agenet/Tudor domain protein in plants that could act as a link between DNA replication, transcription and chromatin remodeling during flower development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas del Dominio Armadillo/genética , Proteínas Portadoras/genética , Proteínas Cromosómicas no Histona/genética , Regulación de la Expresión Génica de las Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas del Dominio Armadillo/metabolismo , Proteínas Portadoras/metabolismo , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN , ADN de Plantas/metabolismo , Transcripción Genética
13.
PLoS One ; 9(12): e114744, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25489849

RESUMEN

Sugarcane interacts with particular types of beneficial nitrogen-fixing bacteria that provide fixed-nitrogen and plant growth hormones to host plants, promoting an increase in plant biomass. Other benefits, as enhanced tolerance to abiotic stresses have been reported to some diazotrophs. Here we aim to study the effects of the association between the diazotroph Gluconacetobacter diazotrophicus PAL5 and sugarcane cv. SP70-1143 during water depletion by characterizing differential transcriptome profiles of sugarcane. RNA-seq libraries were generated from roots and shoots of sugarcane plants free of endophytes that were inoculated with G. diazotrophicus and subjected to water depletion for 3 days. A sugarcane reference transcriptome was constructed and used for the identification of differentially expressed transcripts. The differential profile of non-inoculated SP70-1143 suggests that it responds to water deficit stress by the activation of drought-responsive markers and hormone pathways, as ABA and Ethylene. qRT-PCR revealed that root samples had higher levels of G. diazotrophicus 3 days after water deficit, compared to roots of inoculated plants watered normally. With prolonged drought only inoculated plants survived, indicating that SP70-1143 plants colonized with G. diazotrophicus become more tolerant to drought stress than non-inoculated plants. Strengthening this hypothesis, several gene expression responses to drought were inactivated or regulated in an opposite manner, especially in roots, when plants were colonized by the bacteria. The data suggests that colonized roots would not be suffering from stress in the same way as non-inoculated plants. On the other hand, shoots specifically activate ABA-dependent signaling genes, which could act as key elements in the drought resistance conferred by G. diazotrophicus to SP70-1143. This work reports for the first time the involvement of G. diazotrophicus in the promotion of drought-tolerance to sugarcane cv. SP70-1143, and it describes the initial molecular events that may trigger the increased drought tolerance in the host plant.


Asunto(s)
Adaptación Fisiológica/genética , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , Gluconacetobacter/fisiología , Proteínas de Plantas/genética , Saccharum/crecimiento & desarrollo , Simbiosis/fisiología , Ácido Abscísico/farmacología , Adaptación Fisiológica/efectos de los fármacos , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fijación del Nitrógeno , Análisis de Secuencia por Matrices de Oligonucleótidos , Reguladores del Crecimiento de las Plantas/farmacología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharum/microbiología , Transducción de Señal
14.
BMC Genomics ; 15: 766, 2014 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-25194793

RESUMEN

BACKGROUND: Small RNA (sRNA) has been described as a regulator of gene expression. In order to understand the role of maize sRNA (Zea mays-hybrid UENF 506-8) during association with endophytic nitrogen-fixing bacteria, we analyzed the sRNA regulated by its association with two diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. RESULTS: Deep sequencing analysis was done with RNA extracted from plants inoculated with H. seropedicae, allowing the identification of miRNA and siRNA. A total of 25 conserved miRNA families and 15 novel miRNAs were identified. A dynamic regulation in response to inoculation was also observed. A hypothetical model involving copper-miRNA is proposed, emphasizing the fact that the up-regulation of miR397, miR398, miR408 and miR528, which is followed by inhibition of their targets, can facilitate association with diazotrophic bacteria. Similar expression patterns were observed in samples inoculated with A. brasilense. Moreover, novel miRNA and siRNA were classified in the Transposable Elements (TE) database, and an enrichment of siRNA aligned with TE was observed in the inoculated samples. In addition, an increase in 24-nt siRNA mapping to genes was observed, which was correlated with an increase in methylation of the coding regions and a subsequent reduction in transcription. CONCLUSION: Our results show that maize has RNA-based silencing mechanisms that can trigger specific responses when plants interact with beneficial endophytic diazotrophic bacteria. Our findings suggest important roles for sRNA regulation in maize, and probably in other plants, during association with diazotrophic bacteria, emphasizing the up-regulation of Cu-miRNA.


Asunto(s)
Bacterias , Endófitos , MicroARNs/genética , ARN de Planta/genética , ARN Interferente Pequeño/genética , Zea mays/genética , Zea mays/microbiología , Bacterias/metabolismo , Mapeo Cromosómico , Biología Computacional , Elementos Transponibles de ADN , Bases de Datos de Ácidos Nucleicos , Endófitos/metabolismo , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Estudio de Asociación del Genoma Completo , Metilación , Fijación del Nitrógeno , Fenotipo , Empalme del ARN , Simbiosis , Zea mays/crecimiento & desarrollo
15.
Mol Biol Rep ; 40(12): 7093-102, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24178345

RESUMEN

The anaphase-promoting complex (APC) plays pivotal roles in cell cycle pathways related to plant development. In this study, we present evidence that overproduction of APC10 from Arabidopsis thaliana in tobacco (Nicotiana tabacum) plants promotes significant increases in biomass. Analyzes of plant's fresh and dried weight, root length, number of days to flower and number of seeds of plants overexpressing AtAPC10 verified an improved agronomic performance of the transgenic plants. Detailed analyzes of the leaf growth at the cellular level, and measurements of leaf cell number, showed that AtAPC10 also produce more cells, showing an enhancement of proliferation in these plants. In addition, crossing of plants overexpressing AtAPC10 and AtCDC27a resulted in a synergistic accumulation of biomass and these transgenic plants exhibited superior characteristics compared to the parental lines. The results of the present study suggest that transgenic plants expressing AtAPC10 and AtAPC10/AtCDC27a concomitantly are promising leads to develop plants with higher biomass.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Biomasa , Proteínas de Ciclo Celular/genética , Genes de Plantas , Nicotiana/genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Recuento de Células , Proteínas de Ciclo Celular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fenotipo , Desarrollo de la Planta , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
16.
J Eukaryot Microbiol ; 60(6): 646-51, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24102716

RESUMEN

Indole compounds are involved in a range of functions in many organisms. In the human malaria parasite Plasmodium falciparum, melatonin and other tryptophan derivatives are able to modulate its intraerythrocytic cycle, increasing the schizont population as well as parasitemia, likely through ubiquitin-proteasome system (UPS) gene regulation. In plants, melatonin regulates root development, in a similar way to that described for indoleacetic acid, suggesting that melatonin and indoleacetic acid could co-participate in some physiological processes due to structural similarities. In the present work, we evaluate whether the chemical structure similarity found in indoleacetic acid and melatonin can lead to similar effects in Arabidopsis thaliana lateral root formation and P. falciparum cell cycle modulation, as well as in the UPS of gene regulation, by qRT-PCR. Our data show that P. falciparum is not able to respond to indoleacetic acid either in the modulation of the intraerythrocytic cycle or in the gene regulation mediated by the UPS as observed for melatonin. The similarities of these indole compounds are not sufficient to confer synergistic functions in P. falciparum cell cycle modulation, but could interplay in A. thaliana lateral root formation.


Asunto(s)
Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Melatonina/metabolismo , Plasmodium falciparum/fisiología , Triptófano/metabolismo , Ciclo Celular , Eritrocitos/parasitología , Desarrollo de la Planta , Raíces de Plantas/fisiología , Plasmodium falciparum/crecimiento & desarrollo
17.
Plant Cell Environ ; 35(3): 502-12, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22017483

RESUMEN

MicroRNAs (miRNAs) are part of a novel mechanism of gene regulation that is active in plants under abiotic stress conditions. In the present study, 12 miRNAs were analysed to identify miRNAs differentially expressed in sugarcane subjected to cold stress (4 °C). The expression of miRNAs assayed by stem-loop RT-PCR showed that miR319 is up-regulated in sugarcane plantlets exposed to 4 °C for 24 h. The induction of miR319 expression during cold stress was observed in both roots and shoots. Sugarcane miR319 was also regulated by treatment with abscisic acid. Putative targets of this miRNA were identified and their expression levels were decreased in sugarcane plantlets exposed to cold. The cleavage sites of two targets were mapped using a 5' RACE PCR assay confirming the regulation of these genes by miR319. When sugarcane cultivars contrasting in cold tolerance were subjected to 4 °C, we observed up-regulation of miR319 and down-regulation of the targets in both varieties; however, the changes in expression were delayed in the cold-tolerant cultivar. These results suggest that differences in timing and levels of the expression of miR319 and its targets could be tested as markers for selection of cold-tolerant sugarcane cultivars.


Asunto(s)
Frío , MicroARNs/genética , ARN de Planta/genética , Saccharum/genética , Ácido Abscísico/farmacología , Regulación de la Expresión Génica de las Plantas , Saccharum/fisiología , Estrés Fisiológico , Transcriptoma
18.
Plant J ; 68(2): 351-63, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21711400

RESUMEN

The largest E3 ubiquitin-ligase complex, known as anaphase-promoting complex/cyclosome (APC/C), regulates the proteolysis of cell cycle regulators such as CYCLIN B and SECURIN that are essential for sister-chromatid separation and exit from mitosis. Despite its importance, the role of APC/C in plant cells and the regulation of its activity during cell division remain poorly understood. Here, the Arabidopsis thaliana APC/C subunit APC10 was characterized and shown to functionally complement an apc10 yeast mutant. The APC10 protein was located in specific nuclear bodies, most probably resulting from its association with the proteasome complex. An apc10 Arabidopsis knockout mutant strongly impaired female gametogenesis. Surprisingly, constitutive overexpression of APC10 enhanced leaf size. Through kinematic analysis, the increased leaf size was found to be due to enhanced rates of cell division during the early stages of leaf development and, at the molecular level, by increased APC/C activity as measured by an amplification of the proteolysis rate of the mitotic cyclin, CYCB1;1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proliferación Celular , Hojas de la Planta/crecimiento & desarrollo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Fenómenos Biomecánicos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , ADN Complementario/genética , Gametogénesis en la Planta/genética , Regulación de la Expresión Génica de las Plantas/genética , Prueba de Complementación Genética , Genotipo , Glucuronidasa , Proteínas Fluorescentes Verdes , Mutación , Fenotipo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Proteolisis , ARN de Planta/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Ubiquitina-Proteína Ligasas/genética
19.
Mol Plant Microbe Interact ; 24(5): 562-76, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21190439

RESUMEN

Gluconacetobacter diazotrophicus is a plant-growth-promoting bacterium that colonizes sugarcane. In order to investigate molecular aspects of the G. diazotrophicus-sugarcane interaction, we performed a quantitative mass spectrometry-based proteomic analysis by (15)N metabolic labeling of bacteria, root samples, and co-cultures. Overall, more than 400 proteins were analyzed and 78 were differentially expressed between the plant-bacterium interaction model and control cultures. A comparative analysis of the G. diazotrophicus in interaction with two distinct genotypes of sugarcane, SP70-1143 and Chunee, revealed proteins with fundamental roles in cellular recognition. G. diazotrophicus presented proteins involved in adaptation to atypical conditions and signaling systems during the interaction with both genotypes. However, SP70-1143 and Chunee, sugarcane genotypes with high and low contribution of biological nitrogen fixation, showed divergent responses in contact with G. diazotrophicus. The SP70-1143 genotype overexpressed proteins from signaling cascades and one from a lipid metabolism pathway, whereas Chunee differentially synthesized proteins involved in chromatin remodeling and protein degradation pathways. In addition, we have identified 30 bacterial proteins in the roots of the plant samples; from those, nine were specifically induced by plant signals. This is the first quantitative proteomic analysis of a bacterium-plant interaction, which generated insights into early signaling of the G. diazotrophicus-sugarcane interaction.


Asunto(s)
Proteínas Bacterianas/análisis , Gluconacetobacter/metabolismo , Proteoma/análisis , Saccharum/microbiología , Simbiosis/fisiología , Adaptación Fisiológica , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Técnicas de Cocultivo , Regulación Bacteriana de la Expresión Génica , Genotipo , Gluconacetobacter/genética , Gluconacetobacter/fisiología , Fijación del Nitrógeno/genética , Isótopos de Nitrógeno/análisis , Isótopos de Nitrógeno/metabolismo , Proteoma/fisiología , Saccharum/genética , Saccharum/crecimiento & desarrollo , Saccharum/metabolismo , Transducción de Señal
20.
BMC Plant Biol ; 10: 254, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21087491

RESUMEN

BACKGROUND: The orderly progression through mitosis is regulated by the Anaphase-Promoting Complex (APC), a large multiprotein E3 ubiquitin ligase that targets key cell-cycle regulators for destruction by the 26 S proteasome. The APC is composed of at least 11 subunits and associates with additional regulatory activators during mitosis and interphase cycles. Despite extensive research on APC and activator functions in the cell cycle, only a few components have been functionally characterized in plants. RESULTS: Here, we describe an in-depth search for APC subunits and activator genes in the Arabidopsis, rice and poplar genomes. Also, searches in other genomes that are not completely sequenced were performed. Phylogenetic analyses indicate that some APC subunits and activator genes have experienced gene duplication events in plants, in contrast to animals. Expression patterns of paralog subunits and activators in rice could indicate that this duplication, rather than complete redundancy, could reflect initial specialization steps. The absence of subunit APC7 from the genome of some green algae species and as well as from early metazoan lineages, could mean that APC7 is not required for APC function in unicellular organisms and it may be a result of duplication of another tetratricopeptide (TPR) subunit. Analyses of TPR evolution suggest that duplications of subunits started from the central domains. CONCLUSIONS: The increased complexity of the APC gene structure, tied to the diversification of expression paths, suggests that land plants developed sophisticated mechanisms of APC regulation to cope with the sedentary life style and its associated environmental exposures.


Asunto(s)
Evolución Molecular , Proteínas de Plantas/genética , Plantas/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Arabidopsis/genética , Secuencia de Bases , Chlorophyta/enzimología , Chlorophyta/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genoma de Planta/genética , Datos de Secuencia Molecular , Oryza/genética , Filogenia , Proteínas de Plantas/clasificación , Plantas/enzimología , Populus/genética , Subunidades de Proteína/clasificación , Subunidades de Proteína/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rhodophyta/enzimología , Rhodophyta/genética , Especificidad de la Especie , Sintenía , Complejos de Ubiquitina-Proteína Ligasa/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...