Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 9: 953643, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36341250

RESUMEN

X-linked Alport syndrome (AS) caused by hemizygous disease-causing variants in COL4A5 primarily affects males. Females with a heterozygous state show a diverse phenotypic spectrum ranging from microscopic hematuria to end-stage kidney disease (ESKD) and extrarenal manifestations. In other X-linked diseases, skewed X-inactivation leads to preferential silencing of one X-chromosome and thus can determine the phenotype in females. We aimed to show a correlation between X-inactivation in blood and urine-derived renal cells and clinical phenotype of females with a heterozygous disease-causing variant in COL4A5 compared to healthy controls. A total of 56 females with a heterozygous disease-causing COL4A5 variant and a mean age of 31.6 ± 18.3 SD years were included in this study. A total of 94% had hematuria, 62% proteinuria >200 mg/day, yet only 7% had decreased eGFR. Using human androgen receptor assay X-inactivation was examined in blood cells of all 56 individuals, in urine-derived cells of 27 of these individuals and in all healthy controls. X-inactivation did not correlate with age of first manifestation, proteinuria or eGFR neither in blood, nor in urine. The degree of X-inactivation showed a moderate association with age, especially in urine-derived cells of the patient cohort (rho = 0.403, p = 0.037). Determination of X-inactivation allelity revealed a shift of X-inactivation toward the COL4A5 variant bearing allele. This is the first study examining X-inactivation of urine-derived cells from female individuals with AS. A correlation between phenotype and X-inactivation could not be observed suspecting other genetic modifiers shaping the phenotype in female individuals with AS. The association of X-inactivation with age in urine-derived cells suggests an escape-mechanism inactivating the COL4A5 variant carrying allele in female individuals with AS.

2.
Am J Kidney Dis ; 76(4): 460-470, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32359821

RESUMEN

RATIONALE & OBJECTIVE: Hereditary nephropathies are clinically and genetically heterogeneous disorders. For some patients, the clinical phenotype corresponds to a specific hereditary disease but genetic testing reveals that the expected genotype is not present (phenocopy). The aim of this study was to evaluate the spectrum and frequency of phenocopies identified by using exome sequencing in a cohort of patients who were clinically suspected to have hereditary kidney disorders. STUDY DESIGN: Cross-sectional cohort study. SETTING & PARTICIPANTS: 174 unrelated patients were recruited for exome sequencing and categorized into 7 disease groups according to their clinical presentation. They included autosomal dominant tubulointerstitial kidney disease, Alport syndrome, congenital anomalies of the kidney and urinary tract, ciliopathy, focal segmental glomerulosclerosis/steroid-resistant nephrotic syndrome, VACTERL association, and "other." RESULTS: A genetic diagnosis (either likely pathogenic or pathogenic variant according to the guidelines of the American College of Medical Genetics) was established using exome sequencing in 52 of 174 (30%) cases. A phenocopy was identified for 10 of the 52 exome sequencing-solved cases (19%), representing 6% of the total cohort. The most frequent phenocopies (n=5) were associated with genetic Alport syndrome presenting clinically as focal segmental glomerulosclerosis/steroid-resistant nephrotic syndrome. Strictly targeted gene panels (<25 kilobases) did not identify any of the phenocopy cases. LIMITATIONS: The spectrum of described phenocopies is small. Selection bias may have altered the diagnostic yield within disease groups in our study population. The study cohort was predominantly of non-Finnish European descent, limiting generalizability. Certain hereditary kidney diseases cannot be diagnosed by using exome sequencing (eg, MUC1-autosomal dominant tubulointerstitial kidney disease). CONCLUSIONS: Phenocopies led to the recategorization of disease and altered clinical management. This study highlights that exome sequencing can detect otherwise occult genetic heterogeneity of kidney diseases.


Asunto(s)
Secuenciación del Exoma , Enfermedades Renales/genética , Fenotipo , Adolescente , Adulto , Anciano , Niño , Preescolar , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA