Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(1): 24, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091091

RESUMEN

A novel determination method for protein biomarkers based on on-chip flow rate measurement was developed using a microchip with organic photodiodes (OPDs). This quantitative method is based on the flow rate measurement of an ink solution pushed out by oxygen gas generated through catalase reaction. The amount of oxygen gas generated in the sample reservoir is dependent on the concentration of the analyte; therefore, the flow rate of the ink solution is also dependent on the concentration of the analyte. The concentration of the analyte can thus be estimated by measurement of the ink solution flow rate. The ink solution flow rate was estimated by measuring the migration time of the ink solution between two points using two OPDs placed below the microchannel. The principle of this method was demonstrated by the measurement of catalase using the microchip. In addition, the developed method was applied to the determination of C-reactive protein (CRP), a biomarker of inflammation, based on a catalase-linked immunosorbent assay (C-LISA). The limit of detection for CRP was 0.20 µg/mL. The method was also applied to the determination of CRP in human serum, and the quantitative values obtained by this method were in excellent agreement with those obtained by the conventional enzyme-linked immunosorbent assay (ELISA) method. The developed method does not require a photodetector with high sensitivity and is thus capable of downsizing; therefore, this will be useful for on-site analyses such as point-of-care testing and field measurements.


Asunto(s)
Proteína C-Reactiva , Oxígeno , Humanos , Proteína C-Reactiva/análisis , Catalasa , Tinta , Biomarcadores
2.
Talanta ; 256: 124311, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36738624

RESUMEN

A small-sized fluorescence detector (referred to as a pipette tip [PT]-reader) was developed for a pipette tip-based biosensor. The PT-reader allows us to measure the fluorescence intensity of a solution in a truncated cone-shaped pipette tip with only the tip inserted into the PT-reader. A pipette holder made from a mixture of polydimethylsiloxane (PDMS) and carbon black was capable of the rigorous position arrangement of a truncated cone shaped-pipette tip and the prevention of stray light. The detection performance of the PT-reader was evaluated by measurement of resorufin. The limit of detection (LOD; 3σ) and the relative standard deviation (RSD, n = 4) were estimated to be 0.46 µM and 0.47-4.1%, respectively. This performance was comparable to that of a desktop-type fluorescence microplate reader. In addition, the PT-reader was applied to the quantification of immunoglobulin A (IgA), and the LOD (3σ) of IgA was estimated to be 1.0 ng/mL. The quantitation values of IgA in human saliva obtained by the PT-based enzyme-linked immunosorbent assay (PT-ELISA) were in agreement with those obtained by conventional ELISA. The PT-reader is expected to be useful for low-cost and user-friendly measurements, and the technique of device development proposed in this study will contribute to the progress of on-site medical diagnosis.


Asunto(s)
Técnicas Biosensibles , Humanos , Ensayo de Inmunoadsorción Enzimática
3.
Talanta ; 240: 123162, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34996015

RESUMEN

A simple and low-cost method of fabricating an optical fiber for a surface plasmon resonance (SPR) sensor was proposed. The method is based on the electroless nickel plating and subsequent displacement gold plating of the core of the optical fiber. The thickness of the nickel and gold thin films deposited on the core of the optical fiber could be controlled by measuring the reflected light intensity from the tip of the optical fiber during the plating processes. The sensitivity and resolution of the SPR sensor with the fabricated optical fiber in the refractive index range from 1.333 to 1.348 were 1324.3 nm/RIU and 7.6 × 10-4 RIU, respectively. The developed SPR sensor was successfully used in the determination of immunoglobulin A (IgA) in human saliva. The IgA quantification results obtained by the SPR sensor were in excellent agreement with those obtained by conventional enzyme-linked immunosorbent assay using a 96-well microtiter plate.


Asunto(s)
Fibras Ópticas , Resonancia por Plasmón de Superficie , Oro , Humanos , Inmunoensayo , Refractometría
4.
Talanta ; 238(Pt 1): 122994, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34857327

RESUMEN

We developed a small fluorescence microplate reader with an organic photodiode (OPD) array. The OPD array has nine OPDs that have a large light receiving area (9.62 mm2 per one OPD). Since the OPD array is fabricated on a flat glass plate, it can be placed just below microwells and can detect fluorescence emitted through the entire surface of the microwell bottom. The analytical performance of the developed plate reader was evaluated by measuring an aqueous solution of resorufin. The limit of detection (LOD) for resorufin (0.01-0.05 µM) was lower than that obtained with a plate reader equipped with nine inorganic photodiodes developed in a previous study (0.30 µM) and a commercially available microplate reader (0.16 µM). These results indicate that the large light receiving area improves the detection performance of the system. In addition, the developed reader was successfully used to quantify immunoglobulin A (IgA) in human saliva. The LOD for IgA was estimated to be 1.2 ng/mL, which is low enough to objectively evaluate human stress.


Asunto(s)
Fotometría , Humanos , Límite de Detección
5.
Talanta ; 221: 121666, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33076173

RESUMEN

Anthropogenic CO2 emissions are contributing to global warming and ocean acidification. Rapid and accurate measurements of seawater carbonate chemistry are critical to understand current changes in the ocean and to predict future effects of such changes on marine organisms and ecosystems. Total alkalinity (AT) measurements can be used to directly determine the calcification rate, but they are time-consuming and require large sample volumes. Herein, we describe an automated and transportable flow-through system that can conduct continuous AT measurement using an ion sensitive field effect transistor (ISFET) - Ag/AgCl sensor and three different reference materials. The response time, stability, and uncertainty of our system were evaluated by comparing AT values of calibrated reference materials to those calculated by our system. Our system requires only small amounts of seawater (<10 mL) and a short time per sample (<5 min) to produce results with a relative uncertainty of less than 0.1% (approx. 2.2 µmol kg-1). This system is expected to facilitate easy and rapid in-situ measurement of AT. Continuous AT measurements would enable us to determine short-term calcification responses to changes in light or temperature and improve our understanding of the metabolic mechanisms of creatures such as corals.

6.
Anal Sci ; 32(6): 673-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27302589

RESUMEN

A portable-type surface plasmon resonance (SPR) sensor, composed from a new optical system for multi-sensing, has been developed to apply to environment analysis, clinical diagnosis etc., where many samples are desired to be analyzed at high throughput. The optical system of the sensor consists of a light-emitting diode, a pair of cylindrical lenses, a pair of collimator lenses, a correction lens, a prism, a polarizer and a linear CCD sensor with 2048 pixels. Reflected light from a sensor chip of the width of 6 mm at a certain incident angle was detected by ca. 618 pixels of the linear CCD sensor as an SPR sensor signal. An SPR sensor signal at a specified incident angle is controllable for optimization by adjusting the position of the CCD sensor. A sensor chip having a 30-stripe linear pattern (100 µm width/stripe) was prepared. The spatial resolution as well as the performance of the sensor were evaluated by using sucrose solutions. As a result, the acquisition of SPR sensor signals from 30 sensing points was successfully achieved with a spatial resolution of 100 µm (distance between 2 sensing points). A lower detection limit of ca. 3.2 - 5.5 × 10(-5) RIU with a standard deviation of ±4.5% was obtained by averaging the signals from 6 - 7 pixels of the CCD sensor per one sensing stripe.

7.
Jpn J Infect Dis ; 69(5): 435-8, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26567830

RESUMEN

Enzyme-linked immunosorbent assays (ELISAs) are considered the gold standard for the detection of various immunological reactions and can be used for the detection of infectious diseases during outbreaks or in the care of individual patients. To be useful in the timely implementation of prevention and control measures against infectious diseases, a diagnostic modality should be rapid, accurate, and affordable. In the current study, we demonstrate the efficiency (90% less time and volume consumption compared with those of a standard 96-well ELISA), detection capability, and ease of operation of a field-portable, battery-operated ELISA system, approximately the size of a cellular phone (12 × 6 × 5.5 cm), in the serological diagnosis of measles and rubella viruses that has the potential for onsite testing such as during disease outbreaks.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Sarampión/diagnóstico , Sistemas de Atención de Punto , Rubéola (Sarampión Alemán)/diagnóstico , Pruebas Serológicas/métodos , Humanos , Factores de Tiempo
8.
Sensors (Basel) ; 13(1): 801-12, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23299626

RESUMEN

A novel two dimensional surface plasmon resonance (SPR) sensor system with a multi-point sensing region is described. The use of multiplied beam splitting optics, as a core technology, permitted multi-point sensing to be achieved. This system was capable of simultaneously measuring nine sensing points. Calibration curves for sucrose obtained on nine sensing points were linear in the range of 0-10% with a correlation factor of 0.996-0.998 with a relative standard deviation of 0.090-4.0%. The detection limits defined as S/N = 3 were 1.98 × 10(-6) - 3.91 × 10(-5) RIU. This sensitivity is comparable to that of conventional SPR sensors.

9.
Talanta ; 96: 132-9, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22817940

RESUMEN

The performance of an organic thin film photodiode (OPD), fabricated from a hetero-junction comprised of two layers of C(60) and a phthalocyanine-Cu(II) complex was evaluated by detecting the chemiluminescence generated from the reaction of luminol with horseradish peroxidase in the presence of H(2)O(2), and the fluorescence from resorufin, as an optical detector. The photocurrent of the OPD was linear with respect to the power of light from a commercial LED. The sensitivity of the OPD was sufficient for detecting chemiluminescence with a power 0.1µW/cm(2). The OPD was successfully used in a flow-immunoassay for IgA, a marker of human stress, in which a sandwich immunoassay was carried out on the microchip and the fluorescence from resorufin, produced by the enzymatic reaction, was detected. The detection limits for resorufin and IgA were 5.0µM and 16ng/mL, respectively. The photosensitivity of the OPD remained relatively constant for a minimum of one year.


Asunto(s)
Análisis de Inyección de Flujo/métodos , Fluorometría/métodos , Fulerenos/química , Inmunoensayo/métodos , Inmunoglobulina A/análisis , Indoles/química , Fenómenos Ópticos , Compuestos Organometálicos/química , Animales , Bovinos , Conductividad Eléctrica , Análisis de Inyección de Flujo/instrumentación , Fluorometría/instrumentación , Humanos , Inmunoensayo/instrumentación , Técnicas Analíticas Microfluídicas , Oxazinas/química
10.
J Sep Sci ; 34(20): 2913-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21928434

RESUMEN

A surface plasmon resonance (SPR) sensor on a compact disk (CD)-type microfluidic device was developed to miniaturize the elements of a complete analytical system, pump and valves. The CD-type microfluidic device was fabricated by attaching a polydimethylsiloxane disk plate that contained microchannels and reservoirs to a flat polycarbonate disk plate that contained grating films with a thin layer of Au. The optical system of the SPR sensor and the theory for its operation are based on the principle of a grating coupled-type SPR. The sample and reagent solutions in the reservoirs on the CD-type microfluidic device were sequentially introduced into the detection chamber by centrifugal force generated by the rotation of the microfluidic device. The variation of resonance wavelength was dependent on the refractive index of the sample solution. This CD-type SPR sensor was successfully used in an immunoassay of immunoglobulin A (IgA). The anti-IgA, blocking reagent, sample and washing solution in the reservoirs were sequentially introduced into the detection chamber by changing the frequency of rotation of the microfluidic device. IgA in the sample solution was adsorbed to the anti-IgA immobilized on the Au thin layer in the detection chamber and was then detected by the SPR sensor.


Asunto(s)
Anticuerpos Antiidiotipos/análisis , Técnicas Biosensibles/métodos , Inmunoglobulina A/análisis , Técnicas Analíticas Microfluídicas/métodos , Resonancia por Plasmón de Superficie/métodos , Técnicas Biosensibles/instrumentación , Discos Compactos , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Resonancia por Plasmón de Superficie/instrumentación
11.
J Sep Sci ; 34(20): 2906-12, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21898810

RESUMEN

A fluorescence detection system for a microfluidic device using an organic light-emitting diode (OLED) as the excitation light source and a charge-coupled device (CCD) as the photo detector was developed. The OLED was fabricated on a glass plate by photolithography and a vacuum deposition technique. The OLED produced a green luminescence with a peak emission at 512 nm and a half bandwidth of 55 nm. The maximum external quantum efficiency of the OLED was 7.2%. The emission intensity of the OLED at 10 mA/cm(2) was 13 µW (1.7 mW/cm(2)). The fluorescence detection system consisted of the OLED device, two band-pass filters, a five microchannel poly(dimethylsiloxane) (PDMS) microfluidic device and a linear CCD. The fluorescence detection system was successfully used in a flow-based enzyme-linked immunosorbent assay on a PDMS microfluidic device for the rapid determination of immunoglobulin A (IgA), a marker for human stress. The detection limit (S/N=3) for IgA was 16.5 ng/mL, and the sensitivity was sufficient for evaluating stress. Compared with the conventional 96-well microtiter plate assay, the analysis time and the amounts of reagent and sample solutions could all be reduced.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoglobulina A/análisis , Técnicas Analíticas Microfluídicas/métodos , Espectrometría de Fluorescencia/métodos , Ensayo de Inmunoadsorción Enzimática/instrumentación , Humanos , Indicadores y Reactivos , Técnicas Analíticas Microfluídicas/instrumentación , Sensibilidad y Especificidad , Espectrometría de Fluorescencia/instrumentación
12.
Talanta ; 70(2): 419-25, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18970786

RESUMEN

A small-sized surface plasmon resonance (SPR) sensor with a microchip flow cell has been developed for the purpose of enhancing the sensitivity of the SPR detector for low molecular weight compounds. This portable differential SPR detector consisted of an LED, two cylindrical lenses, a round prism, a divided mirror, a CCD, electronics, and a polydimethylsiloxane/gold microchip with two flow paths (10mm long, 1mm wide, 20-100mum deep). 3-Mercaptopropyltrimethoxysilane was used for sealing the microchip. The performance of the on-site orientated SPR detector was estimated using sucrose and IgA. A drastic change in the SPR intensity appeared. The depth of the flow cell was in inverse proportion to the SPR intensity. Compared to a conventional flow cell having the size of 10mm (L)x1mm (W)x1mm (D), its sensitivity to 10% sucrose and 0.9nM IgA increased about 11 and 39 times, respectively. This phenomenon seemed to be due to the increase in the substance on the SPR sensor based on its size effect. These results showed that the application of the microchip sensor for SPR measurement has the possibility for improvement of the SPR intensity for low molecular substances.

13.
Talanta ; 68(2): 198-206, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18970305

RESUMEN

A surface plasmon resonance (SPR) immunosensor based on a competitive immunoreaction for the determination of trinitrophenol (TNP) is described. A goat anti-mouse IgG (1st antibody), which recognizes an Fc moiety of an antibody, was immobilized on a gold film of an SPR sensor chip by physical adsorption. A TNP solution containing a fixed concentration of a mouse anti-TNP monoclonal antibody (2nd antibody) and a TNP-keyhole limpet hemocyanin (KLH) conjugate was incubated in one-pot and introduced into the sensor chip. The TNP-KLH conjugate competes with TNP for binding with the 2nd antibody. The resulting complex of the 2nd antibody with the TNP-KLH conjugate was bound to the 1st antibody, which is immobilized on the sensor chip. The SPR sensor signal based on resonance angle shift is dependent on the concentration of TNP in the incubation solution in the range from 25ppt to 25ppb, and the coefficient of variation of the SPR signals for the 25ppb TNP solution was determined to be 13% (n=4). The experimental results for the adsorption constant of the 1st antibody on the sensor chip and the binding constant of the 1st antibody complex with the 2nd antibody are discussed, together with theoretical considerations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA