Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; 30(2): 293-300, 2016 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-26689159

RESUMEN

RATIONALE: Current studies which use the oxygen isotope composition from diatom silica (δ(18) Odiatom ) as a palaeoclimate proxy assume that the δ(18) Odiatom value reflects the isotopic composition of the water in which the diatom formed. However, diatoms dissolve post mortem, preferentially losing less silicified structures in the water column and during/after burial into sediments. The impact of dissolution on δ(18) Odiatom values and potential misinterpretation of the palaeoclimate record are evaluated. METHODS: Diatom frustules covering a range of ages (6 samples from the Miocene to the Holocene), environments and species were exposed to a weak alkaline solution for 48 days at two temperatures (20 °C and 4 °C), mimicking natural dissolution post mucilage removal. Following treatment, dissolution was assessed using scanning electron microscope images and a qualitative diatom dissolution index. The diatoms were subsequently analysed for their δ(18) O values using step-wise fluorination and isotope ratio mass spectrometry. RESULTS: Variable levels of diatom dissolution were observed between the six samples; in all cases higher temperatures resulted in more frustule degradation. Dissolution was most evident in younger samples, probably as a result of the more porous nature of the silica. The degree of diatom dissolution does not directly equate to changes in the isotope ratios; the δ(18) Odiatom value was, however, lower after dissolution, but in only half the samples was this reduction outside the analytical error (2σ analytical error = 0.46‰). CONCLUSIONS: We have shown that dissolution can have a small negative impact on δ(18) Odiatom values, causing reductions of up to 0.59‰ beyond analytical error (0.46‰) at natural environmental temperatures. These findings need to be considered in palaeoenvironmental reconstructions using δ(18) Odiatom values, especially when interpreting variations in these values of <1‰.


Asunto(s)
Diatomeas/química , Fósiles , Isótopos de Oxígeno/análisis , Sedimentos Geológicos , Microscopía Electrónica de Rastreo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...