Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nat Commun ; 15(1): 1210, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331934

RESUMEN

We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.


Asunto(s)
Discapacidad Intelectual , Factores de Transcripción , Humanos , Masculino , Ratones , Animales , Factores de Transcripción/metabolismo , Estructuras R-Loop , Transporte Activo de Núcleo Celular , Discapacidad Intelectual/genética , Daño del ADN , Fenotipo , ARN Mensajero/metabolismo
2.
J Inherit Metab Dis ; 47(2): 340-354, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38238109

RESUMEN

Sanfilippo syndrome (Mucopolysaccharidosis type III or MPS III) is a recessively inherited neurodegenerative lysosomal storage disorder. Mutations in genes encoding enzymes in the heparan sulphate degradation pathway lead to the accumulation of partially degraded heparan sulphate, resulting ultimately in the development of neurological deficits. Mutations in the gene encoding the membrane protein heparan-α-glucosaminide N-acetyltransferase (HGSNAT; EC2.3.1.78) cause MPS IIIC (OMIM#252930), typified by impaired cognition, sleep-wake cycle changes, hyperactivity and early death, often before adulthood. The precise disease mechanism that causes symptom emergence remains unknown, posing a significant challenge in the development of effective therapeutics. As HGSNAT is conserved in Drosophila melanogaster, we now describe the creation and characterisation of the first Drosophila models of MPS IIIC. Flies with either an endogenous insertion mutation or RNAi-mediated knockdown of hgsnat were confirmed to have a reduced level of HGSNAT transcripts and age-dependent accumulation of heparan sulphate leading to engorgement of the endo/lysosomal compartment. This resulted in abnormalities at the pre-synapse, defective climbing and reduced overall activity. Altered circadian rhythms (shift in peak morning activity) were seen in hgsnat neuronal knockdown lines. Further, when hgsnat was knocked down in specific glial subsets (wrapping, cortical, astrocytes or subperineural glia), impaired climbing or reduced activity was noted, implying that hgsnat function in these specific glial subtypes contributes significantly to this behaviour and targeting treatments to these cell groups may be necessary to ameliorate or prevent symptom onset. These novel models of MPS IIIC provide critical research tools for delineating the key cellular pathways causal in the onset of neurodegeneration in this presently untreatable disorder.


Asunto(s)
Mucopolisacaridosis III , Animales , Mucopolisacaridosis III/diagnóstico , Drosophila melanogaster/metabolismo , Mutación , Heparitina Sulfato , Neuroglía
3.
Exp Neurol ; 371: 114610, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37944880

RESUMEN

Hampering assessment of treatment outcomes in gene therapy and other clinical trials in patients with childhood dementia is the lack of an objective, non-invasive measure of neurodegeneration. Optical coherence tomography (OCT) is a widely available, rapid, non-invasive, and quantitative method for examining the integrity of the neuroretina. Profound brain and retinal dysfunction occur in patients and animal models of childhood dementia, including Sanfilippo syndrome and we recently revealed a correlation between the age of onset and rate of progression of retinal and brain degeneration in sulfamidase-deficient Sanfilippo mice. The aim of the current study was to use OCT to visualise the discrete changes in retinal structure that occur during disease progression. A progressive decline in retinal thickness was readily observable in Sanfilippo mice using OCT, with differences seen in affected animals from 10-weeks of age. OCT applied to i.v. AAV9-sulfamidase-treated Sanfilippo mice enabled visualisation of improved retinal anatomy in living animals, an outcome confirmed via histology. Importantly, brain disease lesions were also ameliorated in treated Sanfilippo mice. The findings highlight the sensitivity, ease of repetitive use and quantitative capacity of OCT for detection of discrete changes in retinal structure and their prevention with a therapeutic. Combined with the knowledge that retinal and brain degeneration are correlated in Sanfilippo syndrome, OCT provides a window to the brain in this and potentially other childhood dementias.


Asunto(s)
Demencia , Mucopolisacaridosis III , Humanos , Ratones , Animales , Mucopolisacaridosis III/diagnóstico por imagen , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/terapia , Retina/diagnóstico por imagen , Retina/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Terapia Genética , Demencia/patología , Modelos Animales de Enfermedad
4.
Neuropathol Appl Neurobiol ; : e12950, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38112248

RESUMEN

OBJECTIVE: Filipin complex is an autooxidation-prone fluorescent histochemical stain used in the diagnosis of Niemann-Pick Disease Type C (NP-C), a neurodegenerative lysosomal storage disorder. It is also widely used by researchers examining the distribution and accumulation of unesterified cholesterol in cell and animal models of neurodegenerative diseases including NP-C and Sanfilippo syndrome (mucopolysaccharidosis IIIA; MPS IIIA). Recently, it has been suggested to be useful in studying Alzheimer's and Huntington's disease. Given filipin's susceptibility to photobleaching, we sought to establish a quantitative biochemical method for free cholesterol measurement. METHODS: Brain tissue from mice with MPS IIIA was stained with filipin. Total and free cholesterol in brain homogenates was measured using a commercially available kit and a quantitative LC-MS/MS assay was developed. Gangliosides GM1, GM2 and GM3 were also quantified using LC-MS/MS. RESULTS: As anticipated, the MPS IIIA mouse brain displayed large numbers of filipin-positive intra-cytoplasmic inclusions, presumptively endo-lysosomes. Challenging the prevailing dogma, however, we found no difference in the amount of free cholesterol in MPS IIIA mouse brain homogenates cf. control tissue, using either the fluorometric kit or LC-MS/MS assay. Filipin has previously been reported to bind to GM1 ganglioside, however, this lipid does not accumulate in MPS IIIA cells/tissues. Using a fluorometric assay, we demonstrate for the first time that filipin cross-reacts with both GM2 and GM3 gangliosides, explaining the filipin-reactive inclusions observed in MPS IIIA brain cells. CONCLUSION: Filipin is not specific for free cholesterol, and positive staining in any setting should be interpreted with caution.

5.
J Neurochem ; 166(3): 481-496, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37357981

RESUMEN

Sanfilippo syndrome (MPS III) is an autosomal recessive inherited disorder causing dementia in children, following an essentially normal early developmental period. First symptoms typically include delayed language development, hyperactivity and/or insomnia from 2 years of age, followed by unremitting and overt loss of previously acquired skills. There are no approved treatments, and the median age of death is 18 years. Treatments under clinical trial demonstrate therapeutic benefit when applied pre-symptomatically in children diagnosed early through known familial inheritance risk. Newborn screening for Sanfilippo syndrome would enable pre-symptomatic diagnosis and optimal therapeutic benefit, however, many fold more patients with Sanfilippo syndrome are expected to be identified in the population than present with childhood dementia. Therefore, the capacity to stratify which Sanfilippo infants will need treatment in toddlerhood is necessary. While diagnostic methods have been developed, and continue to be refined, currently there are no tools or laboratory-based biomarkers available to provide pre-symptomatic prognosis. There is also a lack of progression and neurocognitive response-to-treatment biomarkers; disease stage and rate of progression are currently determined by age at symptom onset, loss of cerebral grey matter volume by magnetic resonance imaging and developmental quotient score for age. Robust blood-based biomarkers are an urgent unmet need. In this review, we discuss the development of biomarker assays for Sanfilippo based on the neuropathological pathways known to change leading into symptom onset and progression, and their performance as biomarkers in other neurodegenerative diseases. We propose that neural-derived exosomes extracted from blood may provide an ideal liquid biopsy to detect reductions in synaptic protein availability, and mitochondrial function. Furthermore, given the prominent role of neuroinflammation in symptom expression, glial fibrillary acidic protein detection in plasma/serum, alongside measurement of active brain atrophy by neurofilament light chain, warrant increased investigation for prognostic, progression and neurocognitive response-to-treatment biomarker potential in Sanfilippo syndrome and potentially other childhood dementias.


Asunto(s)
Demencia , Mucopolisacaridosis III , Niño , Lactante , Recién Nacido , Humanos , Adolescente , Mucopolisacaridosis III/diagnóstico , Mucopolisacaridosis III/patología , Biomarcadores , Pronóstico
6.
Biochim Biophys Acta Mol Basis Dis ; 1869(4): 166658, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36720445

RESUMEN

Acute neuronopathic (type II) Gaucher disease (GD) is a devastating, untreatable neurological disorder resulting from mutations in the glucocerebrosidase gene (GBA1), with subsequent accumulation of glucosylceramide and glucosylsphingosine. Patients experience progressive decline in neurological function, with onset typically within the first three-to-six months of life and premature death before two years. Mice and drosophila with GD have been described, however little is known about the brain pathology observed in the naturally occurring ovine model of GD. We have characterised pathological changes in GD lamb brain and compared the histological findings to those in GD patient post-mortem tissue, to determine the validity of the sheep as a model of this disease. Five GD and five age-matched unaffected lamb brains were examined. We observed significant expansion of the endo/lysosomal system in GD lamb cingulate gyrus however TPP1 and cathepsin D levels were unchanged or reduced. H&E staining revealed neurons with shrunken, hypereosinophilic cytoplasm and hyperchromatic or pyknotic nuclei (red neurons) that were also shrunken and deeply Nissl stain positive. Amoeboid microglia were noted throughout GD brain. Spheroidal inclusions reactive for TOMM20, ubiquitin and most strikingly, p-Tau were observed in many brain regions in GD lamb brain, potentially indicating disturbed axonal trafficking. Our findings suggest that the ovine model of GD exhibits similar pathological changes to human, mouse, and drosophila type II GD brain, and represents a model suitable for evaluating therapeutic intervention, particularly in utero-targeted approaches.


Asunto(s)
Enfermedad de Gaucher , Enfermedades del Sistema Nervioso , Humanos , Animales , Ovinos , Ratones , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/patología , Glucosilceramidasa/genética , Encéfalo/patología , Enfermedades del Sistema Nervioso/patología , Drosophila
7.
IBRO Neurosci Rep ; 12: 131-141, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35146484

RESUMEN

Lysosomal network abnormalities are an increasingly recognised feature of Alzheimer's disease (AD), which appear early and are progressive in nature. Sandhoff disease and Tay-Sachs disease (neurological lysosomal storage diseases caused by mutations in genes that code for critical subunits of ß-hexosaminidase) result in accumulation of amyloid-ß (Aß) and related proteolytic fragments in the brain. However, experiments that determine whether mutations in genes that code for ß-hexosaminidase are risk factors for AD are currently lacking. To determine the relationship between ß-hexosaminidase and AD, we investigated whether a heterozygous deletion of Hexb, the gene that encodes the beta subunit of ß-hexosaminidase, modifies the behavioural phenotype and appearance of disease lesions in App NL-G-F/NL-G-F (App KI/KI ) mice. App KI/KI and Hexb +/- mice were crossed and evaluated in a behavioural test battery. Neuropathological hallmarks of AD and ganglioside levels in the brain were also examined. Heterozygosity of Hexb in App KI/KI mice reduced learning flexibility during the Reversal Phase of the Morris water maze. Contrary to expectation, heterozygosity of Hexb caused a small but significant decrease in amyloid beta deposition and an increase in the microglial marker IBA1 that was region- and age-specific. Hexb heterozygosity caused detectable changes in the brain and in the behaviour of an AD model mouse, consistent with previous reports that described a biochemical relationship between HEXB and AD. This study reveals that the lysosomal enzyme gene Hexb is not haplosufficient in the mouse AD brain.

8.
J Wildl Dis ; 57(4): 884-890, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34424960

RESUMEN

A lysosomal storage disease, identified as a mucopolysaccharidosis (MPS), was diagnosed in a free-living Kaka (Nestor meridionalis), an endemic New Zealand parrot, which exhibited weakness, incoordination, and seizures. Histopathology showed typical colloid-like cytoplasmic inclusions in Purkinje cells and many other neurons throughout the brain. Electron microscopy revealed that storage bodies contained a variety of linear, curved, or circular membranous profiles and electron-dense bodies. Because the bird came from a small isolated population of Kaka in the northern South Island, a genetic cause was deemed likely. Tandem mass spectrometry revealed increased levels of heparan sulfate-derived disaccharides in the brain and liver compared with tissues from controls. Enzymatic assays documented low levels of iduronate-2-sulfatase activity, which causes a lysosomal storage disorder called MPS type II or Hunter syndrome. A captive breeding program is currently in progress, and the possibility of detecting carriers of this disorder warrants further investigation.


Asunto(s)
Mucopolisacaridosis II , Loros , Animales , Heparitina Sulfato , Mucopolisacaridosis II/diagnóstico , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/patología , Mucopolisacaridosis II/veterinaria , Nueva Zelanda/epidemiología , Espectrometría de Masas en Tándem/veterinaria
9.
J Inherit Metab Dis ; 44(3): 763-776, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33423317

RESUMEN

Lysosomal dysfunction may be an important factor in the pathogenesis of neurodegenerative disorders such as Parkinson's disease (PD). Heterozygous mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GBA1) have been found in PD patients, and some but not all mutations in other lysosomal enzyme genes, for example, NPC1 and MCOLN1 have been associated with PD. We have examined the behaviour and brain structure of mice carrying a D31N mutation in the sulphamidase (Sgsh) gene which encodes a lysosomal sulphatase. Female heterozygotes and wildtype mice aged 12-, 15-, 18- and 21-months of age underwent motor phenotyping and the brain was comprehensively evaluated for disease-associated lesions. Heterozygous mice exhibited impaired performance in the negative geotaxis test when compared with wildtype mice. Whilst the brain of Sgsh heterozygotes aged up to 21-months did not exhibit any of the gross features of PD, Alzheimer's disease or the neurodegenerative lysosomal storage disorders, for example, loss of striatal dopamine, reduced GBA activity, α-synuclein-positive inclusions, perturbation of lipid synthesis, or cerebellar Purkinje cell drop-out, we noted discrete structural aberrations in the dendritic tree of cortical pyramidal neurons in 21-month old animals. The overt disease lesions and resultant phenotypic changes previously described in individuals with heterozygous mutations in lysosomal enzyme genes such as glucocerebrosidase may be enzyme dependent. By better understanding why deficiency in, or mutant forms of some but not all lysosomal proteins leads to heightened risk or earlier onset of classical neurodegenerative disorders, novel disease-causing mechanisms may be identified.


Asunto(s)
Glucosilceramidasa/metabolismo , Heterocigoto , Hidrolasas/genética , Enfermedad de Parkinson/genética , Factores de Edad , Animales , Conducta Animal , Modelos Animales de Enfermedad , Dopamina/metabolismo , Femenino , Ratones , Mutación , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Factores de Riesgo , alfa-Sinucleína/metabolismo
10.
Acta Neuropathol Commun ; 8(1): 194, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203474

RESUMEN

Sanfilippo syndrome is an untreatable form of childhood-onset dementia. Whilst several therapeutic strategies are being evaluated in human clinical trials including i.v. delivery of AAV9-based gene therapy, an urgent unmet need is the availability of non-invasive, quantitative measures of neurodegeneration. We hypothesise that as part of the central nervous system, the retina may provide a window through which to 'visualise' degenerative lesions in brain and amelioration of them following treatment. This is reliant on the age of onset and the rate of disease progression being equivalent in retina and brain. For the first time we have assessed in parallel, the nature, age of onset and rate of retinal and brain degeneration in a mouse model of Sanfilippo syndrome. Significant accumulation of heparan sulphate and expansion of the endo/lysosomal system was observed in both retina and brain pre-symptomatically (by 3 weeks of age). Robust and early activation of micro- and macroglia was also observed in both tissues. There was substantial thinning of retina and loss of rod and cone photoreceptors by ~ 12 weeks of age, a time at which cognitive symptoms are noted. Intravenous delivery of a clinically relevant AAV9-human sulphamidase vector to neonatal mice prevented disease lesion appearance in retina and most areas of brain when assessed 6 weeks later. Collectively, the findings highlight the previously unrecognised early and significant involvement of retina in the Sanfilippo disease process, lesions that are preventable by neonatal treatment with AAV9-sulphamidase. Critically, our data demonstrate for the first time that the advancement of retinal disease parallels that occurring in brain in Sanfilippo syndrome, thus retina may provide an easily accessible neural tissue via which brain disease development and its amelioration with treatment can be monitored.


Asunto(s)
Encéfalo/patología , Mucopolisacaridosis III/patología , Enfermedades Neurodegenerativas/patología , Retina/patología , Degeneración Retiniana/patología , Animales , Enfermedades Asintomáticas , Modelos Animales de Enfermedad , Endosomas/patología , Terapia Genética , Heparitina Sulfato/metabolismo , Humanos , Hidrolasas/genética , Lisosomas/patología , Ratones , Microglía/patología , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología
11.
J Neuropathol Exp Neurol ; 79(10): 1084-1092, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32743645

RESUMEN

We created an excitotoxic striatal lesion model of Huntington disease (HD) in sheep, using the N-methyl-d-aspartate receptor agonist, quinolinic acid (QA). Sixteen sheep received a bolus infusion of QA (75 µL, 180 mM) or saline, first into the left and then (4 weeks later) into the right striatum. Magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) of the striata were performed. Metabolite concentrations and fractional anisotropy (FA) were measured at baseline, acutely (1 week after each surgery) and chronically (5 weeks or greater after the surgeries). There was a significant decrease in the neuronal marker N-acetylaspartate (NAA) and in FA in acutely lesioned striata of the QA-lesioned sheep, followed by a recovery of NAA and FA in the chronically lesioned striata. NAA level changes indicate acute death and/or impairment of neurons immediately after surgery, with recovery of reversibly impaired neurons over time. The change in FA values of the QA-lesioned striata is consistent with acute structural disruption, followed by re-organization and glial cell infiltration with time. Our study demonstrates that MRS and DTI changes in QA-sheep are consistent with HD-like pathology shown in other model species and that the MR investigations can be performed in sheep using a clinically relevant human 3T MRI scanner.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Huntington/inducido químicamente , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ácido Quinolínico/toxicidad , Animales , Anisotropía , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Imagen de Difusión Tensora/métodos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Ovinos , Oveja Doméstica
12.
Mol Ther Methods Clin Dev ; 17: 174-187, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31909089

RESUMEN

Patients with mucopolysaccharidosis type IIIA (MPS IIIA) lack the lysosomal enzyme sulfamidase (SGSH), which is responsible for the degradation of heparan sulfate (HS). Build-up of undegraded HS results in severe progressive neurodegeneration for which there is currently no treatment. The ability of the vector adeno-associated virus (AAV)rh.10-CAG-SGSH (LYS-SAF302) to correct disease pathology was evaluated in a mouse model for MPS IIIA. LYS-SAF302 was administered to 5-week-old MPS IIIA mice at three different doses (8.6E+08, 4.1E+10, and 9.0E+10 vector genomes [vg]/animal) injected into the caudate putamen/striatum and thalamus. LYS-SAF302 was able to dose-dependently correct or significantly reduce HS storage, secondary accumulation of GM2 and GM3 gangliosides, ubiquitin-reactive axonal spheroid lesions, lysosomal expansion, and neuroinflammation at 12 weeks and 25 weeks post-dosing. To study SGSH distribution in the brain of large animals, LYS-SAF302 was injected into the subcortical white matter of dogs (1.0E+12 or 2.0E+12 vg/animal) and cynomolgus monkeys (7.2E+11 vg/animal). Increases of SGSH enzyme activity of at least 20% above endogenous levels were detected in 78% (dogs 4 weeks after injection) and 97% (monkeys 6 weeks after injection) of the total brain volume. Taken together, these data validate intraparenchymal AAV administration as a promising method to achieve widespread enzyme distribution and correction of disease pathology in MPS IIIA.

13.
Neuroscience ; 429: 143-155, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31917339

RESUMEN

Lysosomal network dysfunction is a prominent feature of Alzheimer's disease (AD). Although transgenic mouse models of AD are known to model some aspects of lysosomal network dysfunction, the lysosomal network has not yet been examined in the knock-in AppNL-G-F/NL-G-F mouse. We aimed to determine whether AppNL-G-F/NL-G-F mice exhibit disruptions to the lysosomal network in the brain. Lysosome-associated membrane protein 1 (LAMP1) and cathepsins B, L and D accumulated at amyloid beta plaques in the AppNL-G-F/NL-G-F mice, as occurs in human Alzheimer's patients. The accumulation of these lysosomal proteins occurred early in the development of neuropathology, presenting at the earliest and smallest amyloid beta plaques observed. AppNL-G-F/NL-G-F mice also exhibited elevated activity of ß-hexosaminidase and cathepsins D/E and elevated levels of selected lysosomal network proteins, namely LAMP1, cathepsin D and microtubule-associated protein light chain 3 (LC3-II) in the cerebral cortex, as determined by western blot. Elevation of cathepsin D did not change the extent of co-localisation between cathepsin D and LAMP1 in the AppNL-G-F/NL-G-F mice. These findings demonstrate that perturbations of the lysosomal network occur in the AppNL-G-F/NL-G-F mouse model, further validating its use an animal model of pre-symptomatic AD.


Asunto(s)
Enfermedad de Alzheimer , Aplicaciones Móviles , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Humanos , Lisosomas , Ratones , Ratones Transgénicos
14.
ACS Chem Neurosci ; 10(8): 3847-3858, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31264853

RESUMEN

Heparan sulfate (HS) is a complex polysaccharide from the glycosaminoglycan (GAG) family that accumulates in tissues in several neurological lysosomal storage diseases known as mucopolysaccharidosis (MPS) disorders. The quantitation of HS in biological samples is important for studying MPS disorders but is very challenging because of its high molecular weight and heterogeneity. Recently, acid-catalyzed butanolysis followed by LC-MS/MS analysis has emerged as a promising method for the determination of HS. Butanolysis of HS produces fully desulfated disaccharide cleavage products which are detected by LC-MS/MS. Herein we describe the synthesis of butylated HS disaccharide standards and their use for determining the identity of major product peaks in LC-MS chromatograms from butanolysis of HS as well as the related GAGs heparin and heparosan. Furthermore, synthesis of a d9-labeled disaccharide internal standard enabled the development of a quantitative LC-MS/MS assay for HS. The assay was utilized for the analysis of MPS IIIA mouse brain tissues, revealing significant differences in abundance and in the regional accumulation of the various HS disaccharides in affected mice.


Asunto(s)
Encéfalo/metabolismo , Heparitina Sulfato/metabolismo , Mucopolisacaridosis III/metabolismo , Animales , Cromatografía Liquida , Disacáridos , Ratones , Espectrometría de Masas en Tándem
15.
Vet Pathol ; 56(5): 743-748, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30983534

RESUMEN

A neurological disease was investigated in 3 German Shepherd pups from the same litter that failed to grow normally, appeared stiff, were reluctant to move, and were deaf. They developed intermittent seizures and ataxia and had proprioceptive defects. Histopathology showed severe vacuolation of neurons, astrocytes in nervous tissue, renal tubular epithelial cells, and macrophages in nervous tissue, spleen, and liver. Vacuoles appeared empty with no storage material stained by periodic acid-Schiff (PAS) or Sudan black stains, leading to a diagnosis of a lysosomal storage disease and in particular an oligosaccharidosis. Biochemical and genomic studies showed that this was ß-mannosidosis, not previously diagnosed in dogs. A c.560T>A transition in exon 4 of the MANBA gene was found, which segregated in these and other family members in a manner consistent with it being the causative mutation of an autosomal recessive disease. This mutation led to substitution of isoleucine to asparagine at position 187 of the 885 amino acid enzyme, a change expected to have functional significance.


Asunto(s)
Enfermedades de los Perros/patología , Predisposición Genética a la Enfermedad , beta-Manosidosis/veterinaria , Animales , Cerebro/patología , Enfermedades de los Perros/genética , Perros , Regulación Enzimológica de la Expresión Génica , Técnicas de Genotipaje , Masculino , Manosidasas/genética , Manosidasas/metabolismo , Mutación Missense , Secuenciación Completa del Genoma , beta-Manosidosis/genética , beta-Manosidosis/patología
16.
JIMD Rep ; 43: 91-101, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29923090

RESUMEN

Mucopolysaccharidosis IIIA (MPS IIIA) is an inherited neurodegenerative disease of childhood that results in early death. Post-mortem studies have been carried out on human MPS IIIA brain, but little is known about early disease development. Here, we utilised the Huntaway dog model of MPS IIIA to evaluate disease lesion development from 2 to 24 weeks of age. A significant elevation in primarily stored heparan sulphate was observed in all brain regions assessed in MPS IIIA pups ≤9.5 weeks of age. There was a significant elevation in secondarily stored ganglioside (GM3 36:1) in ≤9.5-week-old MPS IIIA pup cerebellum, and other brain regions also exhibited accumulation of this lipid with time. The number of neural stem cells and neuronal precursor cells was essentially unchanged in MPS IIIA dog brain (c.f. unaffected) over the time course assessed, a finding corroborated by neuron cell counts. We observed early neuroinflammatory changes in young MPS IIIA pup brain, with significantly increased numbers of activated microglia recorded in all but one brain region in MPS IIIA pups ≤9.5 weeks of age (c.f. age-matched unaffected pups). In conclusion, infant-paediatric-stage MPS IIIA canine brain exhibits substantial and progressive primary and secondary substrate accumulation, coupled with early and robust microgliosis. Whilst early initiation of treatment is likely to be required to maintain optimal neurological function, the brain's neurodevelopmental potential appears largely unaffected by the disease process; further investigations confirming this are warranted.

17.
J Inherit Metab Dis ; 41(4): 669-677, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29520737

RESUMEN

Mucopolysaccharidosis (MPS) type IIIA is an inherited, neurodegenerative lysosomal storage disorder resulting from mutations in the SGSH gene. Consequently, N-sulphoglucosamine sulphohydrolase enzyme activity is reduced resulting in impaired catabolism of heparan sulphate. After an asymptomatic period, patients typically show a progressive loss of cognitive and motor skills, with death often during the second decade of life. The diagnostic criteria of autism spectrum disorders (ASD) include impaired communication and social interactions, as well as displays of repetitive behaviours and fixed interests. Children with MPS-IIIA have been shown to exhibit decreased social communicative behaviours from approximately 3-4 years of age but behavioural stereotypies are mostly absent. In this study, we investigated whether a mouse model of MPS-IIIA exhibited ASD-like symptoms. The BTBR T+Itpr3tf/J inbred mouse model of autism was used as a positive control. Male MPS-IIIA and BTBR mice were less sociable compared with unaffected C57BL/6 male mice in the reciprocal social approach test administered at 20 weeks of age. Alternations in the frequency of social interactions was not evident at earlier stages of the disease course, suggesting an acquisition of ASD-like social behaviours. Stereotypical behaviours were not evident in male MPS-IIIA mice in the marble-burying test nor was the quality of nest constructed by mice affected. Collectively, these data suggest that MPS-IIIA mice acquire autistic social behaviours similar to the human condition, and thus they may be useful for elucidating symptom generating mechanisms and novel treatments for ASD.


Asunto(s)
Trastorno del Espectro Autista/complicaciones , Conducta Animal , Relaciones Interpersonales , Mucopolisacaridosis III/complicaciones , Envejecimiento , Animales , Trastorno del Espectro Autista/fisiopatología , Modelos Animales de Enfermedad , Femenino , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Mucopolisacaridosis III/fisiopatología
18.
Exp Neurol ; 303: 38-47, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29408731

RESUMEN

Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder resulting from the deficit of the N-sulfoglucosamine sulfohydrolase (SGSH) enzyme that leads to accumulation of partially-degraded heparan sulfate. MPS IIIA is characterized by severe neurological symptoms, clinically presenting as Sanfilippo syndrome, for which no effective therapy is available. The lysosomal SGSH enzyme is conserved in Drosophila and we have identified increased levels of heparan sulfate in flies with ubiquitous knockdown of SGSH/CG14291. Using neuronal specific knockdown of SGSH/CG14291 we have also observed a higher abundance of Lysotracker-positive puncta as well as increased expression of GFP tagged Ref(2)P supporting disruption to lysosomal function. We have also observed a progressive defect in climbing ability, a hallmark of neurological dysfunction. Genetic screens indicate proteins and pathways that can functionally modify the climbing phenotype, including autophagy-related proteins (Atg1 and Atg18), superoxide dismutase enzymes (Sod1 and Sod2) and heat shock protein (HSPA1). In addition, reducing heparan sulfate biosynthesis by knocking down sulfateless or slalom expression significantly worsens the phenotype; an important observation given that substrate inhibition is being evaluated clinically as a treatment for MPS IIIA. Identifying the cellular pathways that can modify MPS IIIA neuropathology is an essential step in the development of novel therapeutic approaches to prevent and/or ameliorate symptoms in children with Sanfilippo syndrome.


Asunto(s)
Heparitina Sulfato/metabolismo , Mucopolisacaridosis III/tratamiento farmacológico , Mucopolisacaridosis III/patología , Mutación/genética , Neuronas/metabolismo , Factores de Edad , Animales , Animales Modificados Genéticamente , Autofagia/genética , Encéfalo/patología , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Larva/genética , Larva/metabolismo , Locomoción/genética , Mucopolisacaridosis III/complicaciones , Mucopolisacaridosis III/genética , Trastornos Psicomotores/etiología , Interferencia de ARN/fisiología , ARN Mensajero/metabolismo
19.
Behav Brain Res ; 336: 177-181, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28887197

RESUMEN

The recent development of knock-in mouse models of Alzheimer's disease provides distinct advantages over traditional transgenic mouse models that rely on over-expression of amyloid precursor protein. Two such knock-in models that have recently been widely adopted by Alzheimer's researchers are the AppNL-F and AppNL-G-F mice. This study aimed to further characterise the behavioural phenotype and amyloid plaque distribution of AppNL-G-F/NL-G-F (C57BL/6J background) mice at six-months of age. An attempt to replicate a previous study that observed deficits in working memory in the Y-maze, showed no difference between AppNL-G-F/NL-G-F and wild-type mice. Further assessment of these mice using the novel object recognition test and Morris water maze also revealed no differences between AppNL-G-F/NL-G-F and wild-type mice. Despite a lack of demonstrated cognitive deficits, we report a reduction in locomotor/exploratory activity in an open field. Histological examination of AppNL-G-F/NL-G-F mice showed widespread distribution of amyloid plaques at this age. We conclude that whilst at six-months of age, memory deficits are not sufficiently robust to be replicated in varying environments, amyloid plaque burden is significant in AppNL-G-F/NL-G-F knock-in brain.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Placa Amiloide/genética , Placa Amiloide/patología , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Conducta Animal/fisiología , Encéfalo/metabolismo , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Técnicas de Sustitución del Gen , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/genética , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Placa Amiloide/metabolismo
20.
Exp Neurol ; 295: 243-255, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28601604

RESUMEN

Axonal dystrophy has been described as an early pathological feature of neurodegenerative disorders including Alzheimer's disease and amyotrophic lateral sclerosis. Axonal inclusions have also been reported to occur in several neurodegenerative lysosomal storage disorders including Mucopolysaccharidosis type IIIA (MPS IIIA; Sanfilippo syndrome). This disorder results from a mutation in the gene encoding the lysosomal sulphatase sulphamidase, and as a consequence heparan sulphate accumulates, accompanied by secondarily-stored gangliosides. The precise basis of symptom generation in MPS IIIA has not been elucidated, however axonal dystrophy may conceivably lead to impaired vesicular trafficking, neuronal dysfunction and/or death. We have utilised a faithful murine model of MPS IIIA to determine the spatio-temporal profile of neuronal inclusion formation and determine the effect of restoring normal lysosomal function. Dopaminergic (tyrosine hydroxylase-positive), cholinergic (choline acetyltransferase-positive) and GABAergic (glutamic acid decarboxylase65/67-positive) neurons were found to exhibit axonal dystrophy in MPS IIIA mouse brain. Axonal lesions present by ~seven weeks of age were Rab5-positive but lysosomal integral membrane protein-2 negative, suggesting early endosomal involvement. By 9-12-weeks of age, immunoreactivity for the autophagosome-related proteins LC3 and p62 and the proteasomal subunit 19S was noted in the spheroidal structures, together with wildtype α-synuclein, phosphorylated Thr-181 Tau and amyloid precursor protein, indicative of impaired axonal trafficking. Sulphamidase replacement reduced but did not abrogate the axonal lesions. Therefore, if axonal dystrophy impairs neuronal activity and ultimately, neuronal function, its incomplete resolution warrants further investigation.


Asunto(s)
Axones/patología , Encéfalo/patología , Mucopolisacaridosis III/patología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Femenino , Hidrolasas/genética , Inmunohistoquímica , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucopolisacaridosis III/diagnóstico por imagen , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...